Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fnelnfp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndifnfp | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) | |
2 | 1 | eleq2d | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) ) |
3 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
4 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
5 | 3 4 | neeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
6 | 5 | elrab3 | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |
7 | 2 6 | sylan9bb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑋 ) ) |