Metamath Proof Explorer


Theorem fneu

Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fneu ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ∃! 𝑦 𝐵 𝐹 𝑦 )

Proof

Step Hyp Ref Expression
1 funmo ( Fun 𝐹 → ∃* 𝑦 𝐵 𝐹 𝑦 )
2 1 adantr ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → ∃* 𝑦 𝐵 𝐹 𝑦 )
3 eldmg ( 𝐵 ∈ dom 𝐹 → ( 𝐵 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐵 𝐹 𝑦 ) )
4 3 ibi ( 𝐵 ∈ dom 𝐹 → ∃ 𝑦 𝐵 𝐹 𝑦 )
5 4 adantl ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → ∃ 𝑦 𝐵 𝐹 𝑦 )
6 exmoeub ( ∃ 𝑦 𝐵 𝐹 𝑦 → ( ∃* 𝑦 𝐵 𝐹 𝑦 ↔ ∃! 𝑦 𝐵 𝐹 𝑦 ) )
7 5 6 syl ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → ( ∃* 𝑦 𝐵 𝐹 𝑦 ↔ ∃! 𝑦 𝐵 𝐹 𝑦 ) )
8 2 7 mpbid ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → ∃! 𝑦 𝐵 𝐹 𝑦 )
9 8 funfni ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ∃! 𝑦 𝐵 𝐹 𝑦 )