Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | fneu | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∃! 𝑦 𝐵 𝐹 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo | ⊢ ( Fun 𝐹 → ∃* 𝑦 𝐵 𝐹 𝑦 ) | |
2 | 1 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ∃* 𝑦 𝐵 𝐹 𝑦 ) |
3 | eldmg | ⊢ ( 𝐵 ∈ dom 𝐹 → ( 𝐵 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐵 𝐹 𝑦 ) ) | |
4 | 3 | ibi | ⊢ ( 𝐵 ∈ dom 𝐹 → ∃ 𝑦 𝐵 𝐹 𝑦 ) |
5 | 4 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ∃ 𝑦 𝐵 𝐹 𝑦 ) |
6 | exmoeub | ⊢ ( ∃ 𝑦 𝐵 𝐹 𝑦 → ( ∃* 𝑦 𝐵 𝐹 𝑦 ↔ ∃! 𝑦 𝐵 𝐹 𝑦 ) ) | |
7 | 5 6 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( ∃* 𝑦 𝐵 𝐹 𝑦 ↔ ∃! 𝑦 𝐵 𝐹 𝑦 ) ) |
8 | 2 7 | mpbid | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ∃! 𝑦 𝐵 𝐹 𝑦 ) |
9 | 8 | funfni | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∃! 𝑦 𝐵 𝐹 𝑦 ) |