Metamath Proof Explorer


Theorem fnexd

Description: If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnexd.1 ( 𝜑𝐹 Fn 𝐴 )
fnexd.2 ( 𝜑𝐴𝑉 )
Assertion fnexd ( 𝜑𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 fnexd.1 ( 𝜑𝐹 Fn 𝐴 )
2 fnexd.2 ( 𝜑𝐴𝑉 )
3 fnex ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐹 ∈ V )
4 1 2 3 syl2anc ( 𝜑𝐹 ∈ V )