| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 3 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ∅ ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ ∅ ) ∈ Fin ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ∅ ) ∈ Fin ) ) ) |
| 6 |
|
reseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝑦 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ 𝑦 ) ∈ Fin ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑦 ) ∈ Fin ) ) ) |
| 9 |
|
reseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 12 |
|
reseq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝐴 ) ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ 𝐴 ) ∈ Fin ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) ) ) |
| 15 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 16 |
|
0fi |
⊢ ∅ ∈ Fin |
| 17 |
15 16
|
eqeltri |
⊢ ( 𝐹 ↾ ∅ ) ∈ Fin |
| 18 |
17
|
a1i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ∅ ) ∈ Fin ) |
| 19 |
|
resundi |
⊢ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐹 ↾ 𝑦 ) ∪ ( 𝐹 ↾ { 𝑧 } ) ) |
| 20 |
|
snfi |
⊢ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ∈ Fin |
| 21 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
| 22 |
|
funressn |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 23 |
21 22
|
syl |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 25 |
|
ssfi |
⊢ ( ( { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ∈ Fin ∧ ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) → ( 𝐹 ↾ { 𝑧 } ) ∈ Fin ) |
| 26 |
20 24 25
|
sylancr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ { 𝑧 } ) ∈ Fin ) |
| 27 |
|
unfi |
⊢ ( ( ( 𝐹 ↾ 𝑦 ) ∈ Fin ∧ ( 𝐹 ↾ { 𝑧 } ) ∈ Fin ) → ( ( 𝐹 ↾ 𝑦 ) ∪ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Fin ) |
| 28 |
26 27
|
sylan2 |
⊢ ( ( ( 𝐹 ↾ 𝑦 ) ∈ Fin ∧ ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) ) → ( ( 𝐹 ↾ 𝑦 ) ∪ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Fin ) |
| 29 |
19 28
|
eqeltrid |
⊢ ( ( ( 𝐹 ↾ 𝑦 ) ∈ Fin ∧ ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 30 |
29
|
expcom |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( 𝐹 ↾ 𝑦 ) ∈ Fin → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 31 |
30
|
a2i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑦 ) ∈ Fin ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 32 |
31
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑦 ) ∈ Fin ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 33 |
5 8 11 14 18 32
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) ) |
| 34 |
33
|
anabsi7 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
| 35 |
2 34
|
eqeltrrd |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐹 ∈ Fin ) |