Step |
Hyp |
Ref |
Expression |
1 |
|
df-fuc |
⊢ FuncCat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
2 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ∈ V |
3 |
1 2
|
fnmpoi |
⊢ FuncCat Fn ( Cat × Cat ) |