| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnfvimad.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 2 |
|
fnfvimad.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 3 |
|
fnfvimad.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
| 4 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 |
| 5 |
|
imass2 |
⊢ ( ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 → ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐹 “ 𝐶 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐹 “ 𝐶 ) |
| 7 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) |
| 9 |
2 3
|
elind |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∩ 𝐶 ) ) |
| 10 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ∧ 𝐵 ∈ ( 𝐴 ∩ 𝐶 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ) |
| 11 |
1 8 9 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ) |
| 12 |
6 11
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ 𝐶 ) ) |