Metamath Proof Explorer


Theorem fnfvimad

Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnfvimad.1 ( 𝜑𝐹 Fn 𝐴 )
fnfvimad.2 ( 𝜑𝐵𝐴 )
fnfvimad.3 ( 𝜑𝐵𝐶 )
Assertion fnfvimad ( 𝜑 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐶 ) )

Proof

Step Hyp Ref Expression
1 fnfvimad.1 ( 𝜑𝐹 Fn 𝐴 )
2 fnfvimad.2 ( 𝜑𝐵𝐴 )
3 fnfvimad.3 ( 𝜑𝐵𝐶 )
4 inss2 ( 𝐴𝐶 ) ⊆ 𝐶
5 imass2 ( ( 𝐴𝐶 ) ⊆ 𝐶 → ( 𝐹 “ ( 𝐴𝐶 ) ) ⊆ ( 𝐹𝐶 ) )
6 4 5 ax-mp ( 𝐹 “ ( 𝐴𝐶 ) ) ⊆ ( 𝐹𝐶 )
7 inss1 ( 𝐴𝐶 ) ⊆ 𝐴
8 7 a1i ( 𝜑 → ( 𝐴𝐶 ) ⊆ 𝐴 )
9 2 3 elind ( 𝜑𝐵 ∈ ( 𝐴𝐶 ) )
10 fnfvima ( ( 𝐹 Fn 𝐴 ∧ ( 𝐴𝐶 ) ⊆ 𝐴𝐵 ∈ ( 𝐴𝐶 ) ) → ( 𝐹𝐵 ) ∈ ( 𝐹 “ ( 𝐴𝐶 ) ) )
11 1 8 9 10 syl3anc ( 𝜑 → ( 𝐹𝐵 ) ∈ ( 𝐹 “ ( 𝐴𝐶 ) ) )
12 6 11 sselid ( 𝜑 → ( 𝐹𝐵 ) ∈ ( 𝐹𝐶 ) )