Step |
Hyp |
Ref |
Expression |
1 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐵 ) } = ( 𝐹 “ { 𝐵 } ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐵 ) } = ( 𝐹 “ { 𝐵 } ) ) |
3 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) |
5 |
2 4
|
uneq12d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( { ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) = ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) ) |
6 |
5
|
eqcomd |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) = ( { ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) ) |
7 |
|
df-pr |
⊢ { 𝐵 , 𝐶 } = ( { 𝐵 } ∪ { 𝐶 } ) |
8 |
7
|
imaeq2i |
⊢ ( 𝐹 “ { 𝐵 , 𝐶 } ) = ( 𝐹 “ ( { 𝐵 } ∪ { 𝐶 } ) ) |
9 |
|
imaundi |
⊢ ( 𝐹 “ ( { 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) |
10 |
8 9
|
eqtri |
⊢ ( 𝐹 “ { 𝐵 , 𝐶 } ) = ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) |
11 |
|
df-pr |
⊢ { ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } = ( { ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) |
12 |
6 10 11
|
3eqtr4g |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐹 “ { 𝐵 , 𝐶 } ) = { ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } ) |