Metamath Proof Explorer


Theorem fnimatp

Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses fnimatp.1 ( 𝜑𝐹 Fn 𝐷 )
fnimatp.2 ( 𝜑𝐴𝐷 )
fnimatp.3 ( 𝜑𝐵𝐷 )
fnimatp.4 ( 𝜑𝐶𝐷 )
Assertion fnimatp ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) , ( 𝐹𝐶 ) } )

Proof

Step Hyp Ref Expression
1 fnimatp.1 ( 𝜑𝐹 Fn 𝐷 )
2 fnimatp.2 ( 𝜑𝐴𝐷 )
3 fnimatp.3 ( 𝜑𝐵𝐷 )
4 fnimatp.4 ( 𝜑𝐶𝐷 )
5 fnimapr ( ( 𝐹 Fn 𝐷𝐴𝐷𝐵𝐷 ) → ( 𝐹 “ { 𝐴 , 𝐵 } ) = { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) } )
6 1 2 3 5 syl3anc ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 } ) = { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) } )
7 fnsnfv ( ( 𝐹 Fn 𝐷𝐶𝐷 ) → { ( 𝐹𝐶 ) } = ( 𝐹 “ { 𝐶 } ) )
8 1 4 7 syl2anc ( 𝜑 → { ( 𝐹𝐶 ) } = ( 𝐹 “ { 𝐶 } ) )
9 8 eqcomd ( 𝜑 → ( 𝐹 “ { 𝐶 } ) = { ( 𝐹𝐶 ) } )
10 6 9 uneq12d ( 𝜑 → ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) = ( { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) } ∪ { ( 𝐹𝐶 ) } ) )
11 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
12 11 imaeq2i ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = ( 𝐹 “ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) )
13 imaundi ( 𝐹 “ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) )
14 12 13 eqtri ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) )
15 df-tp { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) , ( 𝐹𝐶 ) } = ( { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) } ∪ { ( 𝐹𝐶 ) } )
16 10 14 15 3eqtr4g ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = { ( 𝐹𝐴 ) , ( 𝐹𝐵 ) , ( 𝐹𝐶 ) } )