| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnimatpd.1 | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
						
							| 2 |  | fnimatpd.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 3 |  | fnimatpd.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 4 |  | fnimatpd.4 | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 5 |  | fnimapr | ⊢ ( ( 𝐹  Fn  𝐷  ∧  𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷 )  →  ( 𝐹  “  { 𝐴 ,  𝐵 } )  =  { ( 𝐹 ‘ 𝐴 ) ,  ( 𝐹 ‘ 𝐵 ) } ) | 
						
							| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  “  { 𝐴 ,  𝐵 } )  =  { ( 𝐹 ‘ 𝐴 ) ,  ( 𝐹 ‘ 𝐵 ) } ) | 
						
							| 7 |  | fnsnfv | ⊢ ( ( 𝐹  Fn  𝐷  ∧  𝐶  ∈  𝐷 )  →  { ( 𝐹 ‘ 𝐶 ) }  =  ( 𝐹  “  { 𝐶 } ) ) | 
						
							| 8 | 1 4 7 | syl2anc | ⊢ ( 𝜑  →  { ( 𝐹 ‘ 𝐶 ) }  =  ( 𝐹  “  { 𝐶 } ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  ( 𝐹  “  { 𝐶 } )  =  { ( 𝐹 ‘ 𝐶 ) } ) | 
						
							| 10 | 6 9 | uneq12d | ⊢ ( 𝜑  →  ( ( 𝐹  “  { 𝐴 ,  𝐵 } )  ∪  ( 𝐹  “  { 𝐶 } ) )  =  ( { ( 𝐹 ‘ 𝐴 ) ,  ( 𝐹 ‘ 𝐵 ) }  ∪  { ( 𝐹 ‘ 𝐶 ) } ) ) | 
						
							| 11 |  | df-tp | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) | 
						
							| 12 | 11 | imaeq2i | ⊢ ( 𝐹  “  { 𝐴 ,  𝐵 ,  𝐶 } )  =  ( 𝐹  “  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) ) | 
						
							| 13 |  | imaundi | ⊢ ( 𝐹  “  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) )  =  ( ( 𝐹  “  { 𝐴 ,  𝐵 } )  ∪  ( 𝐹  “  { 𝐶 } ) ) | 
						
							| 14 | 12 13 | eqtri | ⊢ ( 𝐹  “  { 𝐴 ,  𝐵 ,  𝐶 } )  =  ( ( 𝐹  “  { 𝐴 ,  𝐵 } )  ∪  ( 𝐹  “  { 𝐶 } ) ) | 
						
							| 15 |  | df-tp | ⊢ { ( 𝐹 ‘ 𝐴 ) ,  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐶 ) }  =  ( { ( 𝐹 ‘ 𝐴 ) ,  ( 𝐹 ‘ 𝐵 ) }  ∪  { ( 𝐹 ‘ 𝐶 ) } ) | 
						
							| 16 | 10 14 15 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝐹  “  { 𝐴 ,  𝐵 ,  𝐶 } )  =  { ( 𝐹 ‘ 𝐴 ) ,  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐶 ) } ) |