Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
2 |
1
|
ineq1d |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( 𝐹 ∩ I ) ) |
3 |
|
inres |
⊢ ( I ∩ ( 𝐹 ↾ 𝐴 ) ) = ( ( I ∩ 𝐹 ) ↾ 𝐴 ) |
4 |
|
incom |
⊢ ( I ∩ 𝐹 ) = ( 𝐹 ∩ I ) |
5 |
4
|
reseq1i |
⊢ ( ( I ∩ 𝐹 ) ↾ 𝐴 ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
6 |
3 5
|
eqtri |
⊢ ( I ∩ ( 𝐹 ↾ 𝐴 ) ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
7 |
|
incom |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( I ∩ ( 𝐹 ↾ 𝐴 ) ) |
8 |
|
inres |
⊢ ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
9 |
6 7 8
|
3eqtr4i |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( 𝐹 ∩ ( I ↾ 𝐴 ) ) |
10 |
2 9
|
eqtr3di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∩ I ) = ( 𝐹 ∩ ( I ↾ 𝐴 ) ) ) |
11 |
10
|
dmeqd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) ) |
12 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
13 |
|
fndmin |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
14 |
12 13
|
mpan2 |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
15 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
17 |
16
|
rabbiia |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } |
18 |
17
|
a1i |
⊢ ( 𝐹 Fn 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |
19 |
11 14 18
|
3eqtrd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |