Metamath Proof Explorer


Theorem fniniseg

Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014) (Proof shortened by Mario Carneiro , 28-Apr-2015)

Ref Expression
Assertion fniniseg ( 𝐹 Fn 𝐴 → ( 𝐶 ∈ ( 𝐹 “ { 𝐵 } ) ↔ ( 𝐶𝐴 ∧ ( 𝐹𝐶 ) = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elpreima ( 𝐹 Fn 𝐴 → ( 𝐶 ∈ ( 𝐹 “ { 𝐵 } ) ↔ ( 𝐶𝐴 ∧ ( 𝐹𝐶 ) ∈ { 𝐵 } ) ) )
2 fvex ( 𝐹𝐶 ) ∈ V
3 2 elsn ( ( 𝐹𝐶 ) ∈ { 𝐵 } ↔ ( 𝐹𝐶 ) = 𝐵 )
4 3 anbi2i ( ( 𝐶𝐴 ∧ ( 𝐹𝐶 ) ∈ { 𝐵 } ) ↔ ( 𝐶𝐴 ∧ ( 𝐹𝐶 ) = 𝐵 ) )
5 1 4 bitrdi ( 𝐹 Fn 𝐴 → ( 𝐶 ∈ ( 𝐹 “ { 𝐵 } ) ↔ ( 𝐶𝐴 ∧ ( 𝐹𝐶 ) = 𝐵 ) ) )