Step |
Hyp |
Ref |
Expression |
1 |
|
fnlimabslt.p |
⊢ Ⅎ 𝑚 𝜑 |
2 |
|
fnlimabslt.f |
⊢ Ⅎ 𝑚 𝐹 |
3 |
|
fnlimabslt.n |
⊢ Ⅎ 𝑥 𝐹 |
4 |
|
fnlimabslt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
fnlimabslt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
fnlimabslt.b |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
7 |
|
fnlimabslt.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
8 |
|
fnlimabslt.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
9 |
|
fnlimabslt.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
10 |
|
fnlimabslt.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
11 |
|
eqid |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑛 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
15 |
3 14
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
16 |
15
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
17 |
13 16
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
18 |
12 17
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
21 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
22 |
15 21
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) |
23 |
12 22
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑥 dom ⇝ |
25 |
23 24
|
nfel |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
27 |
26
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ) |
29 |
18 19 20 25 28
|
cbvrabw |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } |
30 |
|
ssrab2 |
⊢ { 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
31 |
29 30
|
eqsstri |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
32 |
7 31
|
eqsstri |
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
33 |
32 9
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
34 |
1 5 6 11 33
|
allbutfifvre |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) |
35 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
36 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
37 |
3 7 8 9
|
fnlimcnv |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ⇝ ( 𝐺 ‘ 𝑋 ) ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑙 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) |
39 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑙 |
40 |
2 39
|
nffv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑙 ) |
41 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑋 |
42 |
40 41
|
nffv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑙 ) ‘ 𝑋 ) |
43 |
|
fveq2 |
⊢ ( 𝑚 = 𝑙 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑙 ) ) |
44 |
43
|
fveq1d |
⊢ ( 𝑚 = 𝑙 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑙 ) ‘ 𝑋 ) ) |
45 |
38 42 44
|
cbvmpt |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑙 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑙 ) ‘ 𝑋 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑗 ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐹 ‘ 𝑙 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
49 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ V ) |
50 |
45 47 48 49
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ) |
51 |
35 36 5 4 37 50 10
|
climd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
52 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑗 |
54 |
2 53
|
nffv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑗 ) |
55 |
54 41
|
nffv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) |
56 |
|
nfcv |
⊢ Ⅎ 𝑚 ℂ |
57 |
55 56
|
nfel |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ |
58 |
|
nfcv |
⊢ Ⅎ 𝑚 abs |
59 |
|
nfcv |
⊢ Ⅎ 𝑚 − |
60 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
61 |
|
nfcv |
⊢ Ⅎ 𝑚 dom ⇝ |
62 |
60 61
|
nfel |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
63 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑍 |
64 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
65 |
63 64
|
nfiun |
⊢ Ⅎ 𝑚 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
66 |
62 65
|
nfrabw |
⊢ Ⅎ 𝑚 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
67 |
7 66
|
nfcxfr |
⊢ Ⅎ 𝑚 𝐷 |
68 |
|
nfcv |
⊢ Ⅎ 𝑚 ⇝ |
69 |
68 60
|
nffv |
⊢ Ⅎ 𝑚 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
70 |
67 69
|
nfmpt |
⊢ Ⅎ 𝑚 ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
71 |
8 70
|
nfcxfr |
⊢ Ⅎ 𝑚 𝐺 |
72 |
71 41
|
nffv |
⊢ Ⅎ 𝑚 ( 𝐺 ‘ 𝑋 ) |
73 |
55 59 72
|
nfov |
⊢ Ⅎ 𝑚 ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) |
74 |
58 73
|
nffv |
⊢ Ⅎ 𝑚 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) |
75 |
|
nfcv |
⊢ Ⅎ 𝑚 < |
76 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑌 |
77 |
74 75 76
|
nfbr |
⊢ Ⅎ 𝑚 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 |
78 |
57 77
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) |
79 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑗 ) ) |
80 |
79
|
fveq1d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ) |
81 |
80
|
eleq1d |
⊢ ( 𝑚 = 𝑗 → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ↔ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ ) ) |
82 |
80
|
fvoveq1d |
⊢ ( 𝑚 = 𝑗 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) |
83 |
82
|
breq1d |
⊢ ( 𝑚 = 𝑗 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
84 |
81 83
|
anbi12d |
⊢ ( 𝑚 = 𝑗 → ( ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ↔ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) ) |
85 |
52 78 84
|
cbvralw |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
86 |
85
|
rexbii |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
87 |
51 86
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
88 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
89 |
1 88
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
90 |
|
simpr |
⊢ ( ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) |
91 |
90
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
92 |
89 91
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
93 |
92
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
94 |
87 93
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) |
95 |
34 94
|
jca |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ∧ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
96 |
5
|
rexanuz2 |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ↔ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ∧ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |
97 |
95 96
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑌 ) ) |