Metamath Proof Explorer


Theorem fnlimcnv

Description: The sequence of function values converges to the value of the limit function G at any point of its domain D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimcnv.1 𝑥 𝐹
fnlimcnv.2 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
fnlimcnv.3 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
fnlimcnv.4 ( 𝜑𝑋𝐷 )
Assertion fnlimcnv ( 𝜑 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ⇝ ( 𝐺𝑋 ) )

Proof

Step Hyp Ref Expression
1 fnlimcnv.1 𝑥 𝐹
2 fnlimcnv.2 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
3 fnlimcnv.3 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
4 fnlimcnv.4 ( 𝜑𝑋𝐷 )
5 fveq2 ( 𝑦 = 𝑋 → ( ( 𝐹𝑚 ) ‘ 𝑦 ) = ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
6 5 mpteq2dv ( 𝑦 = 𝑋 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) )
7 6 eleq1d ( 𝑦 = 𝑋 → ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) )
8 nfcv 𝑥 𝑍
9 nfcv 𝑥 ( ℤ𝑛 )
10 nfcv 𝑥 𝑚
11 1 10 nffv 𝑥 ( 𝐹𝑚 )
12 11 nfdm 𝑥 dom ( 𝐹𝑚 )
13 9 12 nfiin 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
14 8 13 nfiun 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
15 nfcv 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
16 nfv 𝑦 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝
17 nfcv 𝑥 𝑦
18 11 17 nffv 𝑥 ( ( 𝐹𝑚 ) ‘ 𝑦 )
19 8 18 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
20 nfcv 𝑥 dom ⇝
21 19 20 nfel 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝
22 fveq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
23 22 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
24 23 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) )
25 14 15 16 21 24 cbvrabw { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
26 2 25 eqtri 𝐷 = { 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
27 7 26 elrab2 ( 𝑋𝐷 ↔ ( 𝑋 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) )
28 4 27 sylib ( 𝜑 → ( 𝑋 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) )
29 28 simprd ( 𝜑 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ )
30 climdm ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ↔ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ⇝ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
31 29 30 sylib ( 𝜑 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ⇝ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
32 nfrab1 𝑥 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
33 2 32 nfcxfr 𝑥 𝐷
34 33 1 3 4 fnlimfv ( 𝜑 → ( 𝐺𝑋 ) = ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
35 34 eqcomd ( 𝜑 → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) = ( 𝐺𝑋 ) )
36 31 35 breqtrd ( 𝜑 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ⇝ ( 𝐺𝑋 ) )