Step |
Hyp |
Ref |
Expression |
1 |
|
fnlimf.p |
⊢ Ⅎ 𝑚 𝜑 |
2 |
|
fnlimf.m |
⊢ Ⅎ 𝑚 𝐹 |
3 |
|
fnlimf.n |
⊢ Ⅎ 𝑥 𝐹 |
4 |
|
fnlimf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
fnlimf.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
6 |
|
fnlimf.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
7 |
|
fnlimf.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑚 𝑧 ∈ 𝐷 |
9 |
1 8
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) |
10 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → 𝑧 ∈ 𝐷 ) |
12 |
9 2 3 4 10 6 11
|
fnlimfvre |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ∈ ℝ ) |
13 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
14 |
6 13
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
15 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐷 |
16 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 ⇝ |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
19 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
20 |
3 19
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
22 |
20 21
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) |
23 |
18 22
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
24 |
17 23
|
nffv |
⊢ Ⅎ 𝑥 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
28 |
14 15 16 24 27
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑧 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
29 |
7 28
|
eqtri |
⊢ 𝐺 = ( 𝑧 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
30 |
12 29
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℝ ) |