Metamath Proof Explorer


Theorem fnlimf

Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimf.p 𝑚 𝜑
fnlimf.m 𝑚 𝐹
fnlimf.n 𝑥 𝐹
fnlimf.z 𝑍 = ( ℤ𝑀 )
fnlimf.f ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
fnlimf.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
fnlimf.g 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
Assertion fnlimf ( 𝜑𝐺 : 𝐷 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 fnlimf.p 𝑚 𝜑
2 fnlimf.m 𝑚 𝐹
3 fnlimf.n 𝑥 𝐹
4 fnlimf.z 𝑍 = ( ℤ𝑀 )
5 fnlimf.f ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
6 fnlimf.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
7 fnlimf.g 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
8 nfv 𝑚 𝑧𝐷
9 1 8 nfan 𝑚 ( 𝜑𝑧𝐷 )
10 5 adantlr ( ( ( 𝜑𝑧𝐷 ) ∧ 𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
11 simpr ( ( 𝜑𝑧𝐷 ) → 𝑧𝐷 )
12 9 2 3 4 10 6 11 fnlimfvre ( ( 𝜑𝑧𝐷 ) → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) ∈ ℝ )
13 nfrab1 𝑥 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
14 6 13 nfcxfr 𝑥 𝐷
15 nfcv 𝑧 𝐷
16 nfcv 𝑧 ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
17 nfcv 𝑥
18 nfcv 𝑥 𝑍
19 nfcv 𝑥 𝑚
20 3 19 nffv 𝑥 ( 𝐹𝑚 )
21 nfcv 𝑥 𝑧
22 20 21 nffv 𝑥 ( ( 𝐹𝑚 ) ‘ 𝑧 )
23 18 22 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) )
24 17 23 nffv 𝑥 ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) )
25 fveq2 ( 𝑥 = 𝑧 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑧 ) )
26 25 mpteq2dv ( 𝑥 = 𝑧 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) )
27 26 fveq2d ( 𝑥 = 𝑧 → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) )
28 14 15 16 24 27 cbvmptf ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑧𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) )
29 7 28 eqtri 𝐺 = ( 𝑧𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑧 ) ) ) )
30 12 29 fmptd ( 𝜑𝐺 : 𝐷 ⟶ ℝ )