Metamath Proof Explorer


Theorem fnmpo

Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)

Ref Expression
Hypothesis fmpo.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion fnmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fmpo.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 elex ( 𝐶𝑉𝐶 ∈ V )
3 2 2ralimi ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀ 𝑥𝐴𝑦𝐵 𝐶 ∈ V )
4 1 fmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 : ( 𝐴 × 𝐵 ) ⟶ V )
5 dffn2 ( 𝐹 Fn ( 𝐴 × 𝐵 ) ↔ 𝐹 : ( 𝐴 × 𝐵 ) ⟶ V )
6 4 5 bitr4i ( ∀ 𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 Fn ( 𝐴 × 𝐵 ) )
7 3 6 sylib ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn ( 𝐴 × 𝐵 ) )