Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fmpo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
Assertion | fnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
2 | elex | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) | |
3 | 2 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ V ) |
4 | 1 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ V ↔ 𝐹 : ( 𝐴 × 𝐵 ) ⟶ V ) |
5 | dffn2 | ⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) ↔ 𝐹 : ( 𝐴 × 𝐵 ) ⟶ V ) | |
6 | 4 5 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ V ↔ 𝐹 Fn ( 𝐴 × 𝐵 ) ) |
7 | 3 6 | sylib | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) |