Metamath Proof Explorer


Theorem fnmptd

Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnmptd.1 𝑥 𝜑
fnmptd.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
fnmptd.3 𝐹 = ( 𝑥𝐴𝐵 )
Assertion fnmptd ( 𝜑𝐹 Fn 𝐴 )

Proof

Step Hyp Ref Expression
1 fnmptd.1 𝑥 𝜑
2 fnmptd.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 fnmptd.3 𝐹 = ( 𝑥𝐴𝐵 )
4 2 ex ( 𝜑 → ( 𝑥𝐴𝐵𝑉 ) )
5 1 4 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝐵𝑉 )
6 3 fnmpt ( ∀ 𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴 )
7 5 6 syl ( 𝜑𝐹 Fn 𝐴 )