Metamath Proof Explorer
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
fnmptd.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
fnmptd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
|
|
fnmptd.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
|
Assertion |
fnmptd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fnmptd.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
fnmptd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
fnmptd.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉 ) ) |
5 |
1 4
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
6 |
3
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |