Metamath Proof Explorer


Theorem fnmptf

Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypothesis mptfnf.0 𝑥 𝐴
Assertion fnmptf ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )

Proof

Step Hyp Ref Expression
1 mptfnf.0 𝑥 𝐴
2 elex ( 𝐵𝑉𝐵 ∈ V )
3 2 ralimi ( ∀ 𝑥𝐴 𝐵𝑉 → ∀ 𝑥𝐴 𝐵 ∈ V )
4 1 mptfnf ( ∀ 𝑥𝐴 𝐵 ∈ V ↔ ( 𝑥𝐴𝐵 ) Fn 𝐴 )
5 3 4 sylib ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )