Metamath Proof Explorer
		
		
		
		Description:  The maps-to notation defines a function with domain.  (Contributed by NM, 9-Apr-2013)  (Revised by Thierry Arnoux, 10-May-2017)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						mptfnf.0 | 
						⊢ Ⅎ 𝑥 𝐴  | 
					
				
					 | 
					Assertion | 
					fnmptf | 
					⊢  ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mptfnf.0 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐵  ∈  𝑉  →  𝐵  ∈  V )  | 
						
						
							| 3 | 
							
								2
							 | 
							ralimi | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  V )  | 
						
						
							| 4 | 
							
								1
							 | 
							mptfnf | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  V  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylib | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 )  |