Metamath Proof Explorer
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013) (Revised by Thierry Arnoux, 10-May-2017)
|
|
Ref |
Expression |
|
Hypothesis |
mptfnf.0 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
fnmptf |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mptfnf.0 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
elex |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) |
3 |
2
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
4 |
1
|
mptfnf |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
5 |
3 4
|
sylib |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |