Metamath Proof Explorer


Theorem fnmptfvd

Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019)

Ref Expression
Hypotheses fnmptfvd.m ( 𝜑𝑀 Fn 𝐴 )
fnmptfvd.s ( 𝑖 = 𝑎𝐷 = 𝐶 )
fnmptfvd.d ( ( 𝜑𝑖𝐴 ) → 𝐷𝑈 )
fnmptfvd.c ( ( 𝜑𝑎𝐴 ) → 𝐶𝑉 )
Assertion fnmptfvd ( 𝜑 → ( 𝑀 = ( 𝑎𝐴𝐶 ) ↔ ∀ 𝑖𝐴 ( 𝑀𝑖 ) = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 fnmptfvd.m ( 𝜑𝑀 Fn 𝐴 )
2 fnmptfvd.s ( 𝑖 = 𝑎𝐷 = 𝐶 )
3 fnmptfvd.d ( ( 𝜑𝑖𝐴 ) → 𝐷𝑈 )
4 fnmptfvd.c ( ( 𝜑𝑎𝐴 ) → 𝐶𝑉 )
5 4 ralrimiva ( 𝜑 → ∀ 𝑎𝐴 𝐶𝑉 )
6 eqid ( 𝑎𝐴𝐶 ) = ( 𝑎𝐴𝐶 )
7 6 fnmpt ( ∀ 𝑎𝐴 𝐶𝑉 → ( 𝑎𝐴𝐶 ) Fn 𝐴 )
8 5 7 syl ( 𝜑 → ( 𝑎𝐴𝐶 ) Fn 𝐴 )
9 eqfnfv ( ( 𝑀 Fn 𝐴 ∧ ( 𝑎𝐴𝐶 ) Fn 𝐴 ) → ( 𝑀 = ( 𝑎𝐴𝐶 ) ↔ ∀ 𝑖𝐴 ( 𝑀𝑖 ) = ( ( 𝑎𝐴𝐶 ) ‘ 𝑖 ) ) )
10 1 8 9 syl2anc ( 𝜑 → ( 𝑀 = ( 𝑎𝐴𝐶 ) ↔ ∀ 𝑖𝐴 ( 𝑀𝑖 ) = ( ( 𝑎𝐴𝐶 ) ‘ 𝑖 ) ) )
11 2 cbvmptv ( 𝑖𝐴𝐷 ) = ( 𝑎𝐴𝐶 )
12 11 eqcomi ( 𝑎𝐴𝐶 ) = ( 𝑖𝐴𝐷 )
13 12 a1i ( 𝜑 → ( 𝑎𝐴𝐶 ) = ( 𝑖𝐴𝐷 ) )
14 13 fveq1d ( 𝜑 → ( ( 𝑎𝐴𝐶 ) ‘ 𝑖 ) = ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) )
15 14 eqeq2d ( 𝜑 → ( ( 𝑀𝑖 ) = ( ( 𝑎𝐴𝐶 ) ‘ 𝑖 ) ↔ ( 𝑀𝑖 ) = ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) ) )
16 15 ralbidv ( 𝜑 → ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) = ( ( 𝑎𝐴𝐶 ) ‘ 𝑖 ) ↔ ∀ 𝑖𝐴 ( 𝑀𝑖 ) = ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) ) )
17 simpr ( ( 𝜑𝑖𝐴 ) → 𝑖𝐴 )
18 eqid ( 𝑖𝐴𝐷 ) = ( 𝑖𝐴𝐷 )
19 18 fvmpt2 ( ( 𝑖𝐴𝐷𝑈 ) → ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) = 𝐷 )
20 17 3 19 syl2anc ( ( 𝜑𝑖𝐴 ) → ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) = 𝐷 )
21 20 eqeq2d ( ( 𝜑𝑖𝐴 ) → ( ( 𝑀𝑖 ) = ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) ↔ ( 𝑀𝑖 ) = 𝐷 ) )
22 21 ralbidva ( 𝜑 → ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) = ( ( 𝑖𝐴𝐷 ) ‘ 𝑖 ) ↔ ∀ 𝑖𝐴 ( 𝑀𝑖 ) = 𝐷 ) )
23 10 16 22 3bitrd ( 𝜑 → ( 𝑀 = ( 𝑎𝐴𝐶 ) ↔ ∀ 𝑖𝐴 ( 𝑀𝑖 ) = 𝐷 ) )