| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnmptfvd.m |
⊢ ( 𝜑 → 𝑀 Fn 𝐴 ) |
| 2 |
|
fnmptfvd.s |
⊢ ( 𝑖 = 𝑎 → 𝐷 = 𝐶 ) |
| 3 |
|
fnmptfvd.d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝐷 ∈ 𝑈 ) |
| 4 |
|
fnmptfvd.c |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 5 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 ) |
| 6 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) |
| 7 |
6
|
fnmpt |
⊢ ( ∀ 𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 9 |
|
eqfnfv |
⊢ ( ( 𝑀 Fn 𝐴 ∧ ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ) ) |
| 10 |
1 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ) ) |
| 11 |
2
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) |
| 12 |
11
|
eqcomi |
⊢ ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ↔ ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑖 ∈ 𝐴 ) |
| 18 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) |
| 19 |
18
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈 ) → ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) = 𝐷 ) |
| 20 |
17 3 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) = 𝐷 ) |
| 21 |
20
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ↔ ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |
| 22 |
21
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |
| 23 |
10 16 22
|
3bitrd |
⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |