Metamath Proof Explorer
		
		
		
		Description:  Functionality and domain of an ordered-pair class abstraction.
       (Contributed by Glauco Siliprandi, 21-Dec-2024)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						fnmptif.1 | 
						⊢ Ⅎ 𝑥 𝐴  | 
					
					
						 | 
						 | 
						fnmptif.2 | 
						⊢ 𝐵  ∈  V  | 
					
					
						 | 
						 | 
						fnmptif.3 | 
						⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
					
				
					 | 
					Assertion | 
					fnmptif | 
					⊢  𝐹  Fn  𝐴  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fnmptif.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							fnmptif.2 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							fnmptif.3 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 4 | 
							
								2
							 | 
							rgenw | 
							⊢ ∀ 𝑥  ∈  𝐴 𝐵  ∈  V  | 
						
						
							| 5 | 
							
								1
							 | 
							mptfnf | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  V  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpbi | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  | 
						
						
							| 7 | 
							
								3
							 | 
							fneq1i | 
							⊢ ( 𝐹  Fn  𝐴  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpbir | 
							⊢ 𝐹  Fn  𝐴  |