Metamath Proof Explorer


Theorem fnmrc

Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fnmrc mrCls Fn ran Moore

Proof

Step Hyp Ref Expression
1 df-mrc mrCls = ( 𝑐 ran Moore ↦ ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) )
2 1 fnmpt ( ∀ 𝑐 ran Moore ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ∈ V → mrCls Fn ran Moore )
3 mreunirn ( 𝑐 ran Moore ↔ 𝑐 ∈ ( Moore ‘ 𝑐 ) )
4 mrcflem ( 𝑐 ∈ ( Moore ‘ 𝑐 ) → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) : 𝒫 𝑐𝑐 )
5 fssxp ( ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) : 𝒫 𝑐𝑐 → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ⊆ ( 𝒫 𝑐 × 𝑐 ) )
6 4 5 syl ( 𝑐 ∈ ( Moore ‘ 𝑐 ) → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ⊆ ( 𝒫 𝑐 × 𝑐 ) )
7 vuniex 𝑐 ∈ V
8 7 pwex 𝒫 𝑐 ∈ V
9 vex 𝑐 ∈ V
10 8 9 xpex ( 𝒫 𝑐 × 𝑐 ) ∈ V
11 ssexg ( ( ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ⊆ ( 𝒫 𝑐 × 𝑐 ) ∧ ( 𝒫 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ∈ V )
12 6 10 11 sylancl ( 𝑐 ∈ ( Moore ‘ 𝑐 ) → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ∈ V )
13 3 12 sylbi ( 𝑐 ran Moore → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ∈ V )
14 2 13 mprg mrCls Fn ran Moore