Step |
Hyp |
Ref |
Expression |
1 |
|
df-mrc |
⊢ mrCls = ( 𝑐 ∈ ∪ ran Moore ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ) |
2 |
1
|
fnmpt |
⊢ ( ∀ 𝑐 ∈ ∪ ran Moore ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V → mrCls Fn ∪ ran Moore ) |
3 |
|
mreunirn |
⊢ ( 𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) ) |
4 |
|
mrcflem |
⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) |
5 |
|
fssxp |
⊢ ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
7 |
|
vuniex |
⊢ ∪ 𝑐 ∈ V |
8 |
7
|
pwex |
⊢ 𝒫 ∪ 𝑐 ∈ V |
9 |
|
vex |
⊢ 𝑐 ∈ V |
10 |
8 9
|
xpex |
⊢ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V |
11 |
|
ssexg |
⊢ ( ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∧ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
12 |
6 10 11
|
sylancl |
⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
13 |
3 12
|
sylbi |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
14 |
2 13
|
mprg |
⊢ mrCls Fn ∪ ran Moore |