Metamath Proof Explorer


Theorem fnmre

Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion fnmre Moore Fn V

Proof

Step Hyp Ref Expression
1 vpwex 𝒫 𝑥 ∈ V
2 1 pwex 𝒫 𝒫 𝑥 ∈ V
3 2 rabex { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → 𝑠𝑐 ) ) } ∈ V
4 df-mre Moore = ( 𝑥 ∈ V ↦ { 𝑐 ∈ 𝒫 𝒫 𝑥 ∣ ( 𝑥𝑐 ∧ ∀ 𝑠 ∈ 𝒫 𝑐 ( 𝑠 ≠ ∅ → 𝑠𝑐 ) ) } )
5 3 4 fnmpti Moore Fn V