| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnn0ind.1 | ⊢ ( 𝑥  =  0  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | fnn0ind.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | fnn0ind.3 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | fnn0ind.4 | ⊢ ( 𝑥  =  𝐾  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | fnn0ind.5 | ⊢ ( 𝑁  ∈  ℕ0  →  𝜓 ) | 
						
							| 6 |  | fnn0ind.6 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑦  ∈  ℕ0  ∧  𝑦  <  𝑁 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | elnn0z | ⊢ ( 𝐾  ∈  ℕ0  ↔  ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾 ) ) | 
						
							| 8 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 9 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 10 |  | elnn0z | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 ) ) | 
						
							| 11 | 10 5 | sylbir | ⊢ ( ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 )  →  𝜓 ) | 
						
							| 12 | 11 | 3adant1 | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  0  ≤  𝑁 )  →  𝜓 ) | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 |  | zre | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℝ ) | 
						
							| 15 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 16 |  | lelttr | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  0  <  𝑁 ) ) | 
						
							| 17 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 0  <  𝑁  →  0  ≤  𝑁 ) ) | 
						
							| 18 | 17 | 3adant2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 0  <  𝑁  →  0  ≤  𝑁 ) ) | 
						
							| 19 | 16 18 | syld | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  0  ≤  𝑁 ) ) | 
						
							| 20 | 13 14 15 19 | mp3an3an | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  0  ≤  𝑁 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑦  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( ( 0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  0  ≤  𝑁 ) ) ) | 
						
							| 22 | 21 | com23 | ⊢ ( 𝑦  ∈  ℤ  →  ( ( 0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  ( 𝑁  ∈  ℤ  →  0  ≤  𝑁 ) ) ) | 
						
							| 23 | 22 | 3impib | ⊢ ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  ( 𝑁  ∈  ℤ  →  0  ≤  𝑁 ) ) | 
						
							| 24 | 23 | impcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 ) )  →  0  ≤  𝑁 ) | 
						
							| 25 |  | elnn0z | ⊢ ( 𝑦  ∈  ℕ0  ↔  ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦 ) ) | 
						
							| 26 | 25 | anbi1i | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  𝑁 )  ↔  ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦 )  ∧  𝑦  <  𝑁 ) ) | 
						
							| 27 | 6 | 3expb | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑦  <  𝑁 ) )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 28 | 10 26 27 | syl2anbr | ⊢ ( ( ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 )  ∧  ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦 )  ∧  𝑦  <  𝑁 ) )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 29 | 28 | expcom | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦 )  ∧  𝑦  <  𝑁 )  →  ( ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 30 | 29 | 3impa | ⊢ ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  ( ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 31 | 30 | expd | ⊢ ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  ( 𝑁  ∈  ℤ  →  ( 0  ≤  𝑁  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 ) )  →  ( 0  ≤  𝑁  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 33 | 24 32 | mpd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 ) )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 34 | 33 | adantll | ⊢ ( ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦  ∧  𝑦  <  𝑁 ) )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 35 | 1 2 3 4 12 34 | fzind | ⊢ ( ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) )  →  𝜏 ) | 
						
							| 36 | 9 35 | mpanl1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) )  →  𝜏 ) | 
						
							| 37 | 36 | expcom | ⊢ ( ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾  ∧  𝐾  ≤  𝑁 )  →  ( 𝑁  ∈  ℤ  →  𝜏 ) ) | 
						
							| 38 | 8 37 | syl5 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾  ∧  𝐾  ≤  𝑁 )  →  ( 𝑁  ∈  ℕ0  →  𝜏 ) ) | 
						
							| 39 | 38 | 3expa | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾 )  ∧  𝐾  ≤  𝑁 )  →  ( 𝑁  ∈  ℕ0  →  𝜏 ) ) | 
						
							| 40 | 7 39 | sylanb | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐾  ≤  𝑁 )  →  ( 𝑁  ∈  ℕ0  →  𝜏 ) ) | 
						
							| 41 | 40 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐾  ∈  ℕ0  ∧  𝐾  ≤  𝑁 ) )  →  𝜏 ) | 
						
							| 42 | 41 | 3impb | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝐾  ≤  𝑁 )  →  𝜏 ) |