Step |
Hyp |
Ref |
Expression |
1 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) |
2 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
3 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
6 |
2 5
|
bitr4id |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
7 |
6
|
ralbidva |
⊢ ( 𝐹 Fn 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
8 |
1 7
|
syl5bb |
⊢ ( 𝐹 Fn 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
9 |
|
fndifnfp |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
10 |
9
|
eqeq1d |
⊢ ( 𝐹 Fn 𝐴 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = ∅ ) ) |
11 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
12 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
13 |
11 12
|
mpan2 |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) ) |
14 |
8 10 13
|
3bitr4d |
⊢ ( 𝐹 Fn 𝐴 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴 ) ) ) |