Metamath Proof Explorer


Theorem fnopab

Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996)

Ref Expression
Hypotheses fnopab.1 ( 𝑥𝐴 → ∃! 𝑦 𝜑 )
fnopab.2 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) }
Assertion fnopab 𝐹 Fn 𝐴

Proof

Step Hyp Ref Expression
1 fnopab.1 ( 𝑥𝐴 → ∃! 𝑦 𝜑 )
2 fnopab.2 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) }
3 1 rgen 𝑥𝐴 ∃! 𝑦 𝜑
4 2 fnopabg ( ∀ 𝑥𝐴 ∃! 𝑦 𝜑𝐹 Fn 𝐴 )
5 3 4 mpbi 𝐹 Fn 𝐴