Metamath Proof Explorer


Theorem fnpm

Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Assertion fnpm pm Fn ( V × V )

Proof

Step Hyp Ref Expression
1 df-pm pm = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } )
2 vex 𝑦 ∈ V
3 vex 𝑥 ∈ V
4 2 3 xpex ( 𝑦 × 𝑥 ) ∈ V
5 4 pwex 𝒫 ( 𝑦 × 𝑥 ) ∈ V
6 5 rabex { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } ∈ V
7 1 6 fnmpoi pm Fn ( V × V )