Metamath Proof Explorer


Theorem fnprg

Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion fnprg ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } Fn { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 funprg ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ∧ 𝐴𝐵 ) → Fun { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } )
2 dmpropg ( ( 𝐶𝑋𝐷𝑌 ) → dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐴 , 𝐵 } )
3 2 3ad2ant2 ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ∧ 𝐴𝐵 ) → dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐴 , 𝐵 } )
4 df-fn ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } Fn { 𝐴 , 𝐵 } ↔ ( Fun { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ∧ dom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐴 , 𝐵 } ) )
5 1 3 4 sylanbrc ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } Fn { 𝐴 , 𝐵 } )