| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancom | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦 𝑥 𝐹 𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 )  ↔  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 | 2 | brresi | ⊢ ( 𝑥 ( 𝐹  ↾  𝐴 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥 𝐹 𝑦 ) ) | 
						
							| 4 | 3 | mobii | ⊢ ( ∃* 𝑦 𝑥 ( 𝐹  ↾  𝐴 ) 𝑦  ↔  ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑥 𝐹 𝑦 ) ) | 
						
							| 5 |  | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑥 𝐹 𝑦 )  ↔  ( 𝑥  ∈  𝐴  →  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∃* 𝑦 𝑥 ( 𝐹  ↾  𝐴 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  →  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹  ↾  𝐴 ) 𝑦  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 8 |  | relres | ⊢ Rel  ( 𝐹  ↾  𝐴 ) | 
						
							| 9 |  | dffun6 | ⊢ ( Fun  ( 𝐹  ↾  𝐴 )  ↔  ( Rel  ( 𝐹  ↾  𝐴 )  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹  ↾  𝐴 ) 𝑦 ) ) | 
						
							| 10 | 8 9 | mpbiran | ⊢ ( Fun  ( 𝐹  ↾  𝐴 )  ↔  ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹  ↾  𝐴 ) 𝑦 ) | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦 𝑥 𝐹 𝑦  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 12 | 7 10 11 | 3bitr4i | ⊢ ( Fun  ( 𝐹  ↾  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 13 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐴 )  =  ( 𝐴  ∩  dom  𝐹 ) | 
						
							| 14 |  | inss1 | ⊢ ( 𝐴  ∩  dom  𝐹 )  ⊆  𝐴 | 
						
							| 15 | 13 14 | eqsstri | ⊢ dom  ( 𝐹  ↾  𝐴 )  ⊆  𝐴 | 
						
							| 16 |  | eqss | ⊢ ( dom  ( 𝐹  ↾  𝐴 )  =  𝐴  ↔  ( dom  ( 𝐹  ↾  𝐴 )  ⊆  𝐴  ∧  𝐴  ⊆  dom  ( 𝐹  ↾  𝐴 ) ) ) | 
						
							| 17 | 15 16 | mpbiran | ⊢ ( dom  ( 𝐹  ↾  𝐴 )  =  𝐴  ↔  𝐴  ⊆  dom  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 18 |  | dfss3 | ⊢ ( 𝐴  ⊆  dom  ( 𝐹  ↾  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  dom  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 19 | 13 | elin2 | ⊢ ( 𝑥  ∈  dom  ( 𝐹  ↾  𝐴 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 20 | 19 | baib | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  dom  ( 𝐹  ↾  𝐴 )  ↔  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 21 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 22 | 21 | eldm | ⊢ ( 𝑥  ∈  dom  𝐹  ↔  ∃ 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 23 | 20 22 | bitrdi | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  dom  ( 𝐹  ↾  𝐴 )  ↔  ∃ 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 24 | 23 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  dom  ( 𝐹  ↾  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 25 | 18 24 | bitri | ⊢ ( 𝐴  ⊆  dom  ( 𝐹  ↾  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 26 | 17 25 | bitri | ⊢ ( dom  ( 𝐹  ↾  𝐴 )  =  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 27 | 12 26 | anbi12i | ⊢ ( ( Fun  ( 𝐹  ↾  𝐴 )  ∧  dom  ( 𝐹  ↾  𝐴 )  =  𝐴 )  ↔  ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦 𝑥 𝐹 𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 28 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝑥 𝐹 𝑦  ∧  ∃* 𝑦 𝑥 𝐹 𝑦 )  ↔  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥 𝐹 𝑦  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 29 | 1 27 28 | 3bitr4i | ⊢ ( ( Fun  ( 𝐹  ↾  𝐴 )  ∧  dom  ( 𝐹  ↾  𝐴 )  =  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝑥 𝐹 𝑦  ∧  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 30 |  | df-fn | ⊢ ( ( 𝐹  ↾  𝐴 )  Fn  𝐴  ↔  ( Fun  ( 𝐹  ↾  𝐴 )  ∧  dom  ( 𝐹  ↾  𝐴 )  =  𝐴 ) ) | 
						
							| 31 |  | df-eu | ⊢ ( ∃! 𝑦 𝑥 𝐹 𝑦  ↔  ( ∃ 𝑦 𝑥 𝐹 𝑦  ∧  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 32 | 31 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝑥 𝐹 𝑦  ↔  ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝑥 𝐹 𝑦  ∧  ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 33 | 29 30 32 | 3bitr4i | ⊢ ( ( 𝐹  ↾  𝐴 )  Fn  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) |