| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
⊢ Rel ( 𝐹 ↾ 𝐵 ) |
| 2 |
|
reldm0 |
⊢ ( Rel ( 𝐹 ↾ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) = ∅ ↔ dom ( 𝐹 ↾ 𝐵 ) = ∅ ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐵 ) = ∅ ↔ dom ( 𝐹 ↾ 𝐵 ) = ∅ ) |
| 4 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
| 5 |
|
incom |
⊢ ( 𝐵 ∩ dom 𝐹 ) = ( dom 𝐹 ∩ 𝐵 ) |
| 6 |
4 5
|
eqtri |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( dom 𝐹 ∩ 𝐵 ) |
| 7 |
|
fndm |
⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) |
| 8 |
7
|
ineq1d |
⊢ ( 𝐹 Fn 𝐴 → ( dom 𝐹 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 9 |
6 8
|
eqtrid |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ↾ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝐹 Fn 𝐴 → ( dom ( 𝐹 ↾ 𝐵 ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 11 |
3 10
|
bitr2id |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ( 𝐹 ↾ 𝐵 ) = ∅ ) ) |