Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnfv |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ran 𝐹 = { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) } ) |
2 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
3 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) |
4 |
2 3
|
eqtr4di |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑥 𝐹 𝑦 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
6 |
5
|
rexxp |
⊢ ( ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) |
7 |
6
|
abbii |
⊢ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } |
8 |
1 7
|
eqtrdi |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } ) |