| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnse.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } |
| 2 |
|
fnse.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
|
fnse.3 |
⊢ ( 𝜑 → 𝑅 Se 𝐵 ) |
| 4 |
|
fnse.4 |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑤 ) ∈ V ) |
| 5 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 6 |
|
seex |
⊢ ( ( 𝑅 Se 𝐵 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) → { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∈ V ) |
| 7 |
3 5 6
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∈ V ) |
| 8 |
|
snex |
⊢ { ( 𝐹 ‘ 𝑧 ) } ∈ V |
| 9 |
|
unexg |
⊢ ( ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∈ V ∧ { ( 𝐹 ‘ 𝑧 ) } ∈ V ) → ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V ) |
| 10 |
7 8 9
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V ) |
| 11 |
|
imaeq2 |
⊢ ( 𝑤 = ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) → ( ◡ 𝐹 “ 𝑤 ) = ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑤 = ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) → ( ( ◡ 𝐹 “ 𝑤 ) ∈ V ↔ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑤 = ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) → ( ( 𝜑 → ( ◡ 𝐹 “ 𝑤 ) ∈ V ) ↔ ( 𝜑 → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) ) ) |
| 14 |
13 4
|
vtoclg |
⊢ ( ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V → ( 𝜑 → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 15 |
14
|
impcom |
⊢ ( ( 𝜑 ∧ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V ) → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) |
| 16 |
10 15
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) |
| 17 |
|
inss2 |
⊢ ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ⊆ ( ◡ 𝑇 “ { 𝑧 } ) |
| 18 |
|
vex |
⊢ 𝑤 ∈ V |
| 19 |
18
|
eliniseg |
⊢ ( 𝑧 ∈ V → ( 𝑤 ∈ ( ◡ 𝑇 “ { 𝑧 } ) ↔ 𝑤 𝑇 𝑧 ) ) |
| 20 |
19
|
elv |
⊢ ( 𝑤 ∈ ( ◡ 𝑇 “ { 𝑧 } ) ↔ 𝑤 𝑇 𝑧 ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 23 |
21 22
|
breqan12d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 24 |
21 22
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 25 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( 𝑥 𝑆 𝑦 ↔ 𝑤 𝑆 𝑧 ) ) |
| 26 |
24 25
|
anbi12d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) |
| 27 |
23 26
|
orbi12d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) ) |
| 28 |
27 1
|
brab2a |
⊢ ( 𝑤 𝑇 𝑧 ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) ) |
| 29 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 30 |
29
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 31 |
|
breq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑤 ) → ( 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 |
31
|
elrab3 |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 |
30 32
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 34 |
33
|
biimprd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ) ) |
| 35 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 36 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑤 ) ∈ V |
| 37 |
36
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 38 |
35 37
|
sylibr |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) ) |
| 40 |
34 39
|
orim12d |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∨ ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 41 |
|
elun |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∨ ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) ) |
| 42 |
40 41
|
imbitrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 43 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) |
| 44 |
42 43
|
jctild |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 45 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 47 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 49 |
44 48
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 50 |
49
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 51 |
28 50
|
biimtrid |
⊢ ( 𝜑 → ( 𝑤 𝑇 𝑧 → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 52 |
20 51
|
biimtrid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ◡ 𝑇 “ { 𝑧 } ) → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 53 |
52
|
ssrdv |
⊢ ( 𝜑 → ( ◡ 𝑇 “ { 𝑧 } ) ⊆ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 54 |
17 53
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 56 |
16 55
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ∈ V ) |
| 57 |
56
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ∈ V ) |
| 58 |
|
dfse2 |
⊢ ( 𝑇 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ∈ V ) |
| 59 |
57 58
|
sylibr |
⊢ ( 𝜑 → 𝑇 Se 𝐴 ) |