| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnsnb.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | fnsnr | ⊢ ( 𝐹  Fn  { 𝐴 }  →  ( 𝑥  ∈  𝐹  →  𝑥  =  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 ) ) | 
						
							| 3 |  | df-fn | ⊢ ( 𝐹  Fn  { 𝐴 }  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  { 𝐴 } ) ) | 
						
							| 4 | 1 | snid | ⊢ 𝐴  ∈  { 𝐴 } | 
						
							| 5 |  | eleq2 | ⊢ ( dom  𝐹  =  { 𝐴 }  →  ( 𝐴  ∈  dom  𝐹  ↔  𝐴  ∈  { 𝐴 } ) ) | 
						
							| 6 | 4 5 | mpbiri | ⊢ ( dom  𝐹  =  { 𝐴 }  →  𝐴  ∈  dom  𝐹 ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( Fun  𝐹  ∧  dom  𝐹  =  { 𝐴 } )  →  ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 8 | 3 7 | sylbi | ⊢ ( 𝐹  Fn  { 𝐴 }  →  ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 9 |  | funfvop | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐹  Fn  { 𝐴 }  →  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑥  =  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  →  ( 𝑥  ∈  𝐹  ↔  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  ∈  𝐹 ) ) | 
						
							| 12 | 10 11 | syl5ibrcom | ⊢ ( 𝐹  Fn  { 𝐴 }  →  ( 𝑥  =  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉  →  𝑥  ∈  𝐹 ) ) | 
						
							| 13 | 2 12 | impbid | ⊢ ( 𝐹  Fn  { 𝐴 }  →  ( 𝑥  ∈  𝐹  ↔  𝑥  =  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 ) ) | 
						
							| 14 |  | velsn | ⊢ ( 𝑥  ∈  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 }  ↔  𝑥  =  〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 ) | 
						
							| 15 | 13 14 | bitr4di | ⊢ ( 𝐹  Fn  { 𝐴 }  →  ( 𝑥  ∈  𝐹  ↔  𝑥  ∈  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 } ) ) | 
						
							| 16 | 15 | eqrdv | ⊢ ( 𝐹  Fn  { 𝐴 }  →  𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 } ) | 
						
							| 17 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 18 | 1 17 | fnsn | ⊢ { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 }  Fn  { 𝐴 } | 
						
							| 19 |  | fneq1 | ⊢ ( 𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 }  →  ( 𝐹  Fn  { 𝐴 }  ↔  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 }  Fn  { 𝐴 } ) ) | 
						
							| 20 | 18 19 | mpbiri | ⊢ ( 𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 }  →  𝐹  Fn  { 𝐴 } ) | 
						
							| 21 | 16 20 | impbii | ⊢ ( 𝐹  Fn  { 𝐴 }  ↔  𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 } ) |