Step |
Hyp |
Ref |
Expression |
1 |
|
fnsnr |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 → 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 ∈ 𝐹 → 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
3 |
|
fnfun |
⊢ ( 𝐹 Fn { 𝐴 } → Fun 𝐹 ) |
4 |
|
snidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 } ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → 𝐴 ∈ { 𝐴 } ) |
6 |
|
fndm |
⊢ ( 𝐹 Fn { 𝐴 } → dom 𝐹 = { 𝐴 } ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → dom 𝐹 = { 𝐴 } ) |
8 |
5 7
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → 𝐴 ∈ dom 𝐹 ) |
9 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
10 |
3 8 9
|
syl2an2 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
11 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → ( 𝑥 ∈ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
12 |
10 11
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → 𝑥 ∈ 𝐹 ) ) |
13 |
2 12
|
impbid |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 ∈ 𝐹 ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
14 |
|
velsn |
⊢ ( 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) |
15 |
13 14
|
bitr4di |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 ∈ 𝐹 ↔ 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
16 |
15
|
eqrdv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 Fn { 𝐴 } ) → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
17 |
16
|
ex |
⊢ ( 𝐴 ∈ V → ( 𝐹 Fn { 𝐴 } → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
18 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
19 |
|
fnsng |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) |
20 |
18 19
|
mpan2 |
⊢ ( 𝐴 ∈ V → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) |
21 |
|
fneq1 |
⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → ( 𝐹 Fn { 𝐴 } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) ) |
22 |
20 21
|
syl5ibrcom |
⊢ ( 𝐴 ∈ V → ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → 𝐹 Fn { 𝐴 } ) ) |
23 |
17 22
|
impbid |
⊢ ( 𝐴 ∈ V → ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |