Step |
Hyp |
Ref |
Expression |
1 |
|
imasng |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 “ { 𝐵 } ) = { 𝑦 ∣ 𝐵 𝐹 𝑦 } ) |
2 |
1
|
adantl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 “ { 𝐵 } ) = { 𝑦 ∣ 𝐵 𝐹 𝑦 } ) |
3 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝐵 ) } ↔ 𝑦 = ( 𝐹 ‘ 𝐵 ) ) |
4 |
|
eqcom |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐵 ) = 𝑦 ) |
5 |
3 4
|
bitri |
⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝐵 ) } ↔ ( 𝐹 ‘ 𝐵 ) = 𝑦 ) |
6 |
|
fnbrfvb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) = 𝑦 ↔ 𝐵 𝐹 𝑦 ) ) |
7 |
5 6
|
bitr2id |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 𝐹 𝑦 ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝐵 ) } ) ) |
8 |
7
|
abbi1dv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { 𝑦 ∣ 𝐵 𝐹 𝑦 } = { ( 𝐹 ‘ 𝐵 ) } ) |
9 |
2 8
|
eqtr2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐵 ) } = ( 𝐹 “ { 𝐵 } ) ) |