Metamath Proof Explorer


Theorem fnsng

Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion fnsng ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 } )

Proof

Step Hyp Ref Expression
1 funsng ( ( 𝐴𝑉𝐵𝑊 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ } )
2 dmsnopg ( 𝐵𝑊 → dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 } )
3 2 adantl ( ( 𝐴𝑉𝐵𝑊 ) → dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 } )
4 df-fn ( { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 } ↔ ( Fun { ⟨ 𝐴 , 𝐵 ⟩ } ∧ dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐴 } ) )
5 1 3 4 sylanbrc ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 } )