Metamath Proof Explorer
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
fnssresd.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
|
|
fnssresd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
|
Assertion |
fnssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fnssresd.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
fnssresd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
3 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |