Metamath Proof Explorer


Theorem fnssresd

Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fnssresd.1 ( 𝜑𝐹 Fn 𝐴 )
fnssresd.2 ( 𝜑𝐵𝐴 )
Assertion fnssresd ( 𝜑 → ( 𝐹𝐵 ) Fn 𝐵 )

Proof

Step Hyp Ref Expression
1 fnssresd.1 ( 𝜑𝐹 Fn 𝐴 )
2 fnssresd.2 ( 𝜑𝐵𝐴 )
3 fnssres ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐹𝐵 ) Fn 𝐵 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐹𝐵 ) Fn 𝐵 )