Step |
Hyp |
Ref |
Expression |
1 |
|
fnunop.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
fnunop.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) |
3 |
|
fnunop.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
4 |
|
fnunop.g |
⊢ 𝐺 = ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) |
5 |
|
fnunop.e |
⊢ 𝐸 = ( 𝐷 ∪ { 𝑋 } ) |
6 |
|
fnunop.d |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝐷 ) |
7 |
|
fnsng |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → { 〈 𝑋 , 𝑌 〉 } Fn { 𝑋 } ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝑋 , 𝑌 〉 } Fn { 𝑋 } ) |
9 |
|
disjsn |
⊢ ( ( 𝐷 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ 𝐷 ) |
10 |
6 9
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 ∩ { 𝑋 } ) = ∅ ) |
11 |
3 8 10
|
fnund |
⊢ ( 𝜑 → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn ( 𝐷 ∪ { 𝑋 } ) ) |
12 |
4
|
fneq1i |
⊢ ( 𝐺 Fn 𝐸 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn 𝐸 ) |
13 |
5
|
fneq2i |
⊢ ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn 𝐸 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn ( 𝐷 ∪ { 𝑋 } ) ) |
14 |
12 13
|
bitri |
⊢ ( 𝐺 Fn 𝐸 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn ( 𝐷 ∪ { 𝑋 } ) ) |
15 |
11 14
|
sylibr |
⊢ ( 𝜑 → 𝐺 Fn 𝐸 ) |