| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnwe.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } |
| 2 |
|
fnwe.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
|
fnwe.3 |
⊢ ( 𝜑 → 𝑅 We 𝐵 ) |
| 4 |
|
fnwe.4 |
⊢ ( 𝜑 → 𝑆 We 𝐴 ) |
| 5 |
|
fnwe.5 |
⊢ ( 𝜑 → ( 𝐹 “ 𝑤 ) ∈ V ) |
| 6 |
|
fnwelem.6 |
⊢ 𝑄 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) } |
| 7 |
|
fnwelem.7 |
⊢ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 ) |
| 8 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 9 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 10 |
8 9
|
opelxpd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 ∈ ( 𝐵 × 𝐴 ) ) |
| 11 |
10 7
|
fmptd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) ) |
| 12 |
|
frn |
⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) ) |
| 13 |
2 11 12
|
3syl |
⊢ ( 𝜑 → ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) ) |
| 14 |
6
|
wexp |
⊢ ( ( 𝑅 We 𝐵 ∧ 𝑆 We 𝐴 ) → 𝑄 We ( 𝐵 × 𝐴 ) ) |
| 15 |
3 4 14
|
syl2anc |
⊢ ( 𝜑 → 𝑄 We ( 𝐵 × 𝐴 ) ) |
| 16 |
|
wess |
⊢ ( ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) → ( 𝑄 We ( 𝐵 × 𝐴 ) → 𝑄 We ran 𝐺 ) ) |
| 17 |
13 15 16
|
sylc |
⊢ ( 𝜑 → 𝑄 We ran 𝐺 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 19 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
| 20 |
18 19
|
opeq12d |
⊢ ( 𝑧 = 𝑥 → 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ) |
| 21 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ V |
| 22 |
20 7 21
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐺 ‘ 𝑥 ) = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ) |
| 23 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 24 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
| 25 |
23 24
|
opeq12d |
⊢ ( 𝑧 = 𝑦 → 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) |
| 26 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ∈ V |
| 27 |
25 7 26
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝐺 ‘ 𝑦 ) = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) |
| 28 |
22 27
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) ) |
| 29 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 30 |
|
vex |
⊢ 𝑥 ∈ V |
| 31 |
29 30
|
opth |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 = 𝑦 ) ) |
| 32 |
31
|
simprbi |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) |
| 33 |
28 32
|
biimtrdi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 34 |
33
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 35 |
|
dff13 |
⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) ↔ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 36 |
11 34 35
|
sylanblrc |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) ) |
| 37 |
|
f1f1orn |
⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) → 𝐺 : 𝐴 –1-1-onto→ ran 𝐺 ) |
| 38 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ ran 𝐺 → ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 ) |
| 39 |
2 36 37 38
|
4syl |
⊢ ( 𝜑 → ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 ) |
| 40 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } |
| 41 |
40
|
f1oiso2 |
⊢ ( ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 → ◡ 𝐺 Isom 𝑄 , { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) |
| 42 |
|
frel |
⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → Rel 𝐺 ) |
| 43 |
|
dfrel2 |
⊢ ( Rel 𝐺 ↔ ◡ ◡ 𝐺 = 𝐺 ) |
| 44 |
42 43
|
sylib |
⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ◡ ◡ 𝐺 = 𝐺 ) |
| 45 |
44
|
fveq1d |
⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ◡ ◡ 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 46 |
44
|
fveq1d |
⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ◡ ◡ 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 47 |
45 46
|
breq12d |
⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ) ) |
| 48 |
11 47
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ) ) |
| 50 |
22 27
|
breqan12d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) ) |
| 52 |
|
eleq1 |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ ( 𝐵 × 𝐴 ) ) ) |
| 53 |
|
opelxp |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 54 |
52 53
|
bitrdi |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 55 |
54
|
anbi1d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ) ) |
| 56 |
29 30
|
op1std |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 1st ‘ 𝑢 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 57 |
56
|
breq1d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ) ) |
| 58 |
56
|
eqeq1d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ) ) |
| 59 |
29 30
|
op2ndd |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 2nd ‘ 𝑢 ) = 𝑥 ) |
| 60 |
59
|
breq1d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ↔ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) |
| 61 |
58 60
|
anbi12d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) |
| 62 |
57 61
|
orbi12d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 63 |
55 62
|
anbi12d |
⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ) ) |
| 64 |
|
eleq1 |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 𝑣 ∈ ( 𝐵 × 𝐴 ) ↔ 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ∈ ( 𝐵 × 𝐴 ) ) ) |
| 65 |
|
opelxp |
⊢ ( 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) |
| 66 |
64 65
|
bitrdi |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 𝑣 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 67 |
66
|
anbi2d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) ) |
| 68 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 69 |
|
vex |
⊢ 𝑦 ∈ V |
| 70 |
68 69
|
op1std |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 1st ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 71 |
70
|
breq2d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) |
| 72 |
70
|
eqeq2d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 73 |
68 69
|
op2ndd |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 2nd ‘ 𝑣 ) = 𝑦 ) |
| 74 |
73
|
breq2d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ↔ 𝑥 𝑆 𝑦 ) ) |
| 75 |
72 74
|
anbi12d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) |
| 76 |
71 75
|
orbi12d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) |
| 77 |
67 76
|
anbi12d |
⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) ) |
| 78 |
21 26 63 77 6
|
brab |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) |
| 79 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 80 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 81 |
79 80
|
jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 82 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 83 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 84 |
82 83
|
jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) |
| 85 |
81 84
|
anim12dan |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 86 |
85
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) ) |
| 87 |
78 86
|
bitr4id |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) |
| 88 |
49 51 87
|
3bitrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) ) |
| 89 |
88
|
pm5.32da |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) ) ) |
| 90 |
89
|
opabbidv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ) |
| 91 |
1 90
|
eqtrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ) |
| 92 |
|
isoeq3 |
⊢ ( 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } → ( ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ↔ ◡ 𝐺 Isom 𝑄 , { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) ) |
| 93 |
91 92
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ↔ ◡ 𝐺 Isom 𝑄 , { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) ) |
| 94 |
41 93
|
imbitrrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 → ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ) ) |
| 95 |
2 39 94
|
sylc |
⊢ ( 𝜑 → ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ) |
| 96 |
|
isocnv |
⊢ ( ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) → ◡ ◡ 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ) |
| 97 |
95 96
|
syl |
⊢ ( 𝜑 → ◡ ◡ 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ) |
| 98 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐺 “ 𝑤 ) = ( 𝐺 “ 𝑤 ) |
| 99 |
|
vex |
⊢ 𝑤 ∈ V |
| 100 |
|
xpexg |
⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ V ∧ 𝑤 ∈ V ) → ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ∈ V ) |
| 101 |
5 99 100
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ∈ V ) |
| 102 |
|
imadmres |
⊢ ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) = ( 𝐺 “ 𝑤 ) |
| 103 |
|
dmres |
⊢ dom ( 𝐺 ↾ 𝑤 ) = ( 𝑤 ∩ dom 𝐺 ) |
| 104 |
103
|
elin2 |
⊢ ( 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) |
| 105 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom 𝐺 ) |
| 106 |
|
f1dm |
⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) → dom 𝐺 = 𝐴 ) |
| 107 |
2 36 106
|
3syl |
⊢ ( 𝜑 → dom 𝐺 = 𝐴 ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → dom 𝐺 = 𝐴 ) |
| 109 |
105 108
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ 𝐴 ) |
| 110 |
109 22
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ) |
| 111 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝐹 Fn 𝐴 ) |
| 113 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑤 ) = ( 𝑤 ∩ dom 𝐹 ) |
| 114 |
|
inss2 |
⊢ ( 𝑤 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
| 115 |
112
|
fndmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → dom 𝐹 = 𝐴 ) |
| 116 |
114 115
|
sseqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝐴 ) |
| 117 |
113 116
|
eqsstrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → dom ( 𝐹 ↾ 𝑤 ) ⊆ 𝐴 ) |
| 118 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ 𝑤 ) |
| 119 |
109 115
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 120 |
113
|
elin2 |
⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝑤 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 121 |
118 119 120
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom ( 𝐹 ↾ 𝑤 ) ) |
| 122 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐴 ∧ dom ( 𝐹 ↾ 𝑤 ) ⊆ 𝐴 ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝑤 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ dom ( 𝐹 ↾ 𝑤 ) ) ) |
| 123 |
112 117 121 122
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ dom ( 𝐹 ↾ 𝑤 ) ) ) |
| 124 |
|
imadmres |
⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝑤 ) ) = ( 𝐹 “ 𝑤 ) |
| 125 |
123 124
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑤 ) ) |
| 126 |
125 118
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 127 |
110 126
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 128 |
104 127
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 129 |
128
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 130 |
|
f1fun |
⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) → Fun 𝐺 ) |
| 131 |
2 36 130
|
3syl |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 132 |
|
resss |
⊢ ( 𝐺 ↾ 𝑤 ) ⊆ 𝐺 |
| 133 |
|
dmss |
⊢ ( ( 𝐺 ↾ 𝑤 ) ⊆ 𝐺 → dom ( 𝐺 ↾ 𝑤 ) ⊆ dom 𝐺 ) |
| 134 |
132 133
|
ax-mp |
⊢ dom ( 𝐺 ↾ 𝑤 ) ⊆ dom 𝐺 |
| 135 |
|
funimass4 |
⊢ ( ( Fun 𝐺 ∧ dom ( 𝐺 ↾ 𝑤 ) ⊆ dom 𝐺 ) → ( ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ↔ ∀ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) ) |
| 136 |
131 134 135
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ↔ ∀ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) ) |
| 137 |
129 136
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 138 |
102 137
|
eqsstrrid |
⊢ ( 𝜑 → ( 𝐺 “ 𝑤 ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 139 |
101 138
|
ssexd |
⊢ ( 𝜑 → ( 𝐺 “ 𝑤 ) ∈ V ) |
| 140 |
98 139
|
eqeltrid |
⊢ ( 𝜑 → ( ◡ ◡ 𝐺 “ 𝑤 ) ∈ V ) |
| 141 |
140
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑤 ( ◡ ◡ 𝐺 “ 𝑤 ) ∈ V ) |
| 142 |
|
isowe2 |
⊢ ( ( ◡ ◡ 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ∧ ∀ 𝑤 ( ◡ ◡ 𝐺 “ 𝑤 ) ∈ V ) → ( 𝑄 We ran 𝐺 → 𝑇 We 𝐴 ) ) |
| 143 |
97 141 142
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 We ran 𝐺 → 𝑇 We 𝐴 ) ) |
| 144 |
17 143
|
mpd |
⊢ ( 𝜑 → 𝑇 We 𝐴 ) |