Metamath Proof Explorer


Theorem fnwelem

Description: Lemma for fnwe . (Contributed by Mario Carneiro, 10-Mar-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses fnwe.1 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) }
fnwe.2 ( 𝜑𝐹 : 𝐴𝐵 )
fnwe.3 ( 𝜑𝑅 We 𝐵 )
fnwe.4 ( 𝜑𝑆 We 𝐴 )
fnwe.5 ( 𝜑 → ( 𝐹𝑤 ) ∈ V )
fnwelem.6 𝑄 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st𝑢 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 1st𝑢 ) = ( 1st𝑣 ) ∧ ( 2nd𝑢 ) 𝑆 ( 2nd𝑣 ) ) ) ) }
fnwelem.7 𝐺 = ( 𝑧𝐴 ↦ ⟨ ( 𝐹𝑧 ) , 𝑧 ⟩ )
Assertion fnwelem ( 𝜑𝑇 We 𝐴 )

Proof

Step Hyp Ref Expression
1 fnwe.1 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) }
2 fnwe.2 ( 𝜑𝐹 : 𝐴𝐵 )
3 fnwe.3 ( 𝜑𝑅 We 𝐵 )
4 fnwe.4 ( 𝜑𝑆 We 𝐴 )
5 fnwe.5 ( 𝜑 → ( 𝐹𝑤 ) ∈ V )
6 fnwelem.6 𝑄 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st𝑢 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 1st𝑢 ) = ( 1st𝑣 ) ∧ ( 2nd𝑢 ) 𝑆 ( 2nd𝑣 ) ) ) ) }
7 fnwelem.7 𝐺 = ( 𝑧𝐴 ↦ ⟨ ( 𝐹𝑧 ) , 𝑧 ⟩ )
8 ffvelrn ( ( 𝐹 : 𝐴𝐵𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
9 simpr ( ( 𝐹 : 𝐴𝐵𝑧𝐴 ) → 𝑧𝐴 )
10 8 9 opelxpd ( ( 𝐹 : 𝐴𝐵𝑧𝐴 ) → ⟨ ( 𝐹𝑧 ) , 𝑧 ⟩ ∈ ( 𝐵 × 𝐴 ) )
11 10 7 fmptd ( 𝐹 : 𝐴𝐵𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) )
12 frn ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) )
13 2 11 12 3syl ( 𝜑 → ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) )
14 6 wexp ( ( 𝑅 We 𝐵𝑆 We 𝐴 ) → 𝑄 We ( 𝐵 × 𝐴 ) )
15 3 4 14 syl2anc ( 𝜑𝑄 We ( 𝐵 × 𝐴 ) )
16 wess ( ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) → ( 𝑄 We ( 𝐵 × 𝐴 ) → 𝑄 We ran 𝐺 ) )
17 13 15 16 sylc ( 𝜑𝑄 We ran 𝐺 )
18 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
19 id ( 𝑧 = 𝑥𝑧 = 𝑥 )
20 18 19 opeq12d ( 𝑧 = 𝑥 → ⟨ ( 𝐹𝑧 ) , 𝑧 ⟩ = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ )
21 opex ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ ∈ V
22 20 7 21 fvmpt ( 𝑥𝐴 → ( 𝐺𝑥 ) = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ )
23 fveq2 ( 𝑧 = 𝑦 → ( 𝐹𝑧 ) = ( 𝐹𝑦 ) )
24 id ( 𝑧 = 𝑦𝑧 = 𝑦 )
25 23 24 opeq12d ( 𝑧 = 𝑦 → ⟨ ( 𝐹𝑧 ) , 𝑧 ⟩ = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ )
26 opex ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ∈ V
27 25 7 26 fvmpt ( 𝑦𝐴 → ( 𝐺𝑦 ) = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ )
28 22 27 eqeqan12d ( ( 𝑥𝐴𝑦𝐴 ) → ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ↔ ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ) )
29 fvex ( 𝐹𝑥 ) ∈ V
30 vex 𝑥 ∈ V
31 29 30 opth ( ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ↔ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 = 𝑦 ) )
32 31 simprbi ( ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → 𝑥 = 𝑦 )
33 28 32 syl6bi ( ( 𝑥𝐴𝑦𝐴 ) → ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) )
34 33 rgen2 𝑥𝐴𝑦𝐴 ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 )
35 dff13 ( 𝐺 : 𝐴1-1→ ( 𝐵 × 𝐴 ) ↔ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) ) )
36 11 34 35 sylanblrc ( 𝐹 : 𝐴𝐵𝐺 : 𝐴1-1→ ( 𝐵 × 𝐴 ) )
37 f1f1orn ( 𝐺 : 𝐴1-1→ ( 𝐵 × 𝐴 ) → 𝐺 : 𝐴1-1-onto→ ran 𝐺 )
38 f1ocnv ( 𝐺 : 𝐴1-1-onto→ ran 𝐺 𝐺 : ran 𝐺1-1-onto𝐴 )
39 2 36 37 38 4syl ( 𝜑 𝐺 : ran 𝐺1-1-onto𝐴 )
40 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) }
41 40 f1oiso2 ( 𝐺 : ran 𝐺1-1-onto𝐴 𝐺 Isom 𝑄 , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } ( ran 𝐺 , 𝐴 ) )
42 frel ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → Rel 𝐺 )
43 dfrel2 ( Rel 𝐺 𝐺 = 𝐺 )
44 42 43 sylib ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → 𝐺 = 𝐺 )
45 44 fveq1d ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( 𝐺𝑥 ) = ( 𝐺𝑥 ) )
46 44 fveq1d ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( 𝐺𝑦 ) = ( 𝐺𝑦 ) )
47 45 46 breq12d ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ↔ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) )
48 11 47 syl ( 𝐹 : 𝐴𝐵 → ( ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ↔ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) )
49 48 adantr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ↔ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) )
50 22 27 breqan12d ( ( 𝑥𝐴𝑦𝐴 ) → ( ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ↔ ⟨ ( 𝐹𝑥 ) , 𝑥𝑄 ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ) )
51 50 adantl ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ↔ ⟨ ( 𝐹𝑥 ) , 𝑥𝑄 ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ) )
52 eleq1 ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ↔ ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ ∈ ( 𝐵 × 𝐴 ) ) )
53 opelxp ( ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) )
54 52 53 bitrdi ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ) )
55 54 anbi1d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ↔ ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ) )
56 29 30 op1std ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( 1st𝑢 ) = ( 𝐹𝑥 ) )
57 56 breq1d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( 1st𝑢 ) 𝑅 ( 1st𝑣 ) ↔ ( 𝐹𝑥 ) 𝑅 ( 1st𝑣 ) ) )
58 56 eqeq1d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( 1st𝑢 ) = ( 1st𝑣 ) ↔ ( 𝐹𝑥 ) = ( 1st𝑣 ) ) )
59 29 30 op2ndd ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( 2nd𝑢 ) = 𝑥 )
60 59 breq1d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( 2nd𝑢 ) 𝑆 ( 2nd𝑣 ) ↔ 𝑥 𝑆 ( 2nd𝑣 ) ) )
61 58 60 anbi12d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( ( 1st𝑢 ) = ( 1st𝑣 ) ∧ ( 2nd𝑢 ) 𝑆 ( 2nd𝑣 ) ) ↔ ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ∧ 𝑥 𝑆 ( 2nd𝑣 ) ) ) )
62 57 61 orbi12d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( ( 1st𝑢 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 1st𝑢 ) = ( 1st𝑣 ) ∧ ( 2nd𝑢 ) 𝑆 ( 2nd𝑣 ) ) ) ↔ ( ( 𝐹𝑥 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ∧ 𝑥 𝑆 ( 2nd𝑣 ) ) ) ) )
63 55 62 anbi12d ( 𝑢 = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ → ( ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st𝑢 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 1st𝑢 ) = ( 1st𝑣 ) ∧ ( 2nd𝑢 ) 𝑆 ( 2nd𝑣 ) ) ) ) ↔ ( ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ∧ 𝑥 𝑆 ( 2nd𝑣 ) ) ) ) ) )
64 eleq1 ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( 𝑣 ∈ ( 𝐵 × 𝐴 ) ↔ ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ∈ ( 𝐵 × 𝐴 ) ) )
65 opelxp ( ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) )
66 64 65 bitrdi ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( 𝑣 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) ) )
67 66 anbi2d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ↔ ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) ) ) )
68 fvex ( 𝐹𝑦 ) ∈ V
69 vex 𝑦 ∈ V
70 68 69 op1std ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( 1st𝑣 ) = ( 𝐹𝑦 ) )
71 70 breq2d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( ( 𝐹𝑥 ) 𝑅 ( 1st𝑣 ) ↔ ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ) )
72 70 eqeq2d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ↔ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
73 68 69 op2ndd ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( 2nd𝑣 ) = 𝑦 )
74 73 breq2d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( 𝑥 𝑆 ( 2nd𝑣 ) ↔ 𝑥 𝑆 𝑦 ) )
75 72 74 anbi12d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ∧ 𝑥 𝑆 ( 2nd𝑣 ) ) ↔ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) )
76 71 75 orbi12d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( ( ( 𝐹𝑥 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ∧ 𝑥 𝑆 ( 2nd𝑣 ) ) ) ↔ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) )
77 67 76 anbi12d ( 𝑣 = ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ → ( ( ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 1st𝑣 ) ∨ ( ( 𝐹𝑥 ) = ( 1st𝑣 ) ∧ 𝑥 𝑆 ( 2nd𝑣 ) ) ) ) ↔ ( ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) )
78 21 26 63 77 6 brab ( ⟨ ( 𝐹𝑥 ) , 𝑥𝑄 ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ↔ ( ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) )
79 ffvelrn ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ 𝐵 )
80 simpr ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → 𝑥𝐴 )
81 79 80 jca ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) )
82 ffvelrn ( ( 𝐹 : 𝐴𝐵𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ 𝐵 )
83 simpr ( ( 𝐹 : 𝐴𝐵𝑦𝐴 ) → 𝑦𝐴 )
84 82 83 jca ( ( 𝐹 : 𝐴𝐵𝑦𝐴 ) → ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) )
85 81 84 anim12dan ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) ) )
86 85 biantrurd ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ( ( ( 𝐹𝑥 ) ∈ 𝐵𝑥𝐴 ) ∧ ( ( 𝐹𝑦 ) ∈ 𝐵𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) )
87 78 86 bitr4id ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ⟨ ( 𝐹𝑥 ) , 𝑥𝑄 ⟨ ( 𝐹𝑦 ) , 𝑦 ⟩ ↔ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) )
88 49 51 87 3bitrrd ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) )
89 88 pm5.32da ( 𝐹 : 𝐴𝐵 → ( ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ↔ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) ) )
90 89 opabbidv ( 𝐹 : 𝐴𝐵 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ∨ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } )
91 1 90 eqtrid ( 𝐹 : 𝐴𝐵𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } )
92 isoeq3 ( 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } → ( 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ↔ 𝐺 Isom 𝑄 , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) )
93 91 92 syl ( 𝐹 : 𝐴𝐵 → ( 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ↔ 𝐺 Isom 𝑄 , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐺𝑥 ) 𝑄 ( 𝐺𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) )
94 41 93 syl5ibr ( 𝐹 : 𝐴𝐵 → ( 𝐺 : ran 𝐺1-1-onto𝐴 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ) )
95 2 39 94 sylc ( 𝜑 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) )
96 isocnv ( 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) → 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) )
97 95 96 syl ( 𝜑 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) )
98 imacnvcnv ( 𝐺𝑤 ) = ( 𝐺𝑤 )
99 vex 𝑤 ∈ V
100 xpexg ( ( ( 𝐹𝑤 ) ∈ V ∧ 𝑤 ∈ V ) → ( ( 𝐹𝑤 ) × 𝑤 ) ∈ V )
101 5 99 100 sylancl ( 𝜑 → ( ( 𝐹𝑤 ) × 𝑤 ) ∈ V )
102 imadmres ( 𝐺 “ dom ( 𝐺𝑤 ) ) = ( 𝐺𝑤 )
103 dmres dom ( 𝐺𝑤 ) = ( 𝑤 ∩ dom 𝐺 )
104 103 elin2 ( 𝑥 ∈ dom ( 𝐺𝑤 ) ↔ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) )
105 simprr ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom 𝐺 )
106 f1dm ( 𝐺 : 𝐴1-1→ ( 𝐵 × 𝐴 ) → dom 𝐺 = 𝐴 )
107 2 36 106 3syl ( 𝜑 → dom 𝐺 = 𝐴 )
108 107 adantr ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → dom 𝐺 = 𝐴 )
109 105 108 eleqtrd ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → 𝑥𝐴 )
110 109 22 syl ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → ( 𝐺𝑥 ) = ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ )
111 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
112 111 adantr ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → 𝐹 Fn 𝐴 )
113 dmres dom ( 𝐹𝑤 ) = ( 𝑤 ∩ dom 𝐹 )
114 inss2 ( 𝑤 ∩ dom 𝐹 ) ⊆ dom 𝐹
115 112 fndmd ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → dom 𝐹 = 𝐴 )
116 114 115 sseqtrid ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝐴 )
117 113 116 eqsstrid ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → dom ( 𝐹𝑤 ) ⊆ 𝐴 )
118 simprl ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → 𝑥𝑤 )
119 109 115 eleqtrrd ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom 𝐹 )
120 113 elin2 ( 𝑥 ∈ dom ( 𝐹𝑤 ) ↔ ( 𝑥𝑤𝑥 ∈ dom 𝐹 ) )
121 118 119 120 sylanbrc ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom ( 𝐹𝑤 ) )
122 fnfvima ( ( 𝐹 Fn 𝐴 ∧ dom ( 𝐹𝑤 ) ⊆ 𝐴𝑥 ∈ dom ( 𝐹𝑤 ) ) → ( 𝐹𝑥 ) ∈ ( 𝐹 “ dom ( 𝐹𝑤 ) ) )
123 112 117 121 122 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → ( 𝐹𝑥 ) ∈ ( 𝐹 “ dom ( 𝐹𝑤 ) ) )
124 imadmres ( 𝐹 “ dom ( 𝐹𝑤 ) ) = ( 𝐹𝑤 )
125 123 124 eleqtrdi ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → ( 𝐹𝑥 ) ∈ ( 𝐹𝑤 ) )
126 125 118 opelxpd ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → ⟨ ( 𝐹𝑥 ) , 𝑥 ⟩ ∈ ( ( 𝐹𝑤 ) × 𝑤 ) )
127 110 126 eqeltrd ( ( 𝜑 ∧ ( 𝑥𝑤𝑥 ∈ dom 𝐺 ) ) → ( 𝐺𝑥 ) ∈ ( ( 𝐹𝑤 ) × 𝑤 ) )
128 104 127 sylan2b ( ( 𝜑𝑥 ∈ dom ( 𝐺𝑤 ) ) → ( 𝐺𝑥 ) ∈ ( ( 𝐹𝑤 ) × 𝑤 ) )
129 128 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ dom ( 𝐺𝑤 ) ( 𝐺𝑥 ) ∈ ( ( 𝐹𝑤 ) × 𝑤 ) )
130 f1fun ( 𝐺 : 𝐴1-1→ ( 𝐵 × 𝐴 ) → Fun 𝐺 )
131 2 36 130 3syl ( 𝜑 → Fun 𝐺 )
132 resss ( 𝐺𝑤 ) ⊆ 𝐺
133 dmss ( ( 𝐺𝑤 ) ⊆ 𝐺 → dom ( 𝐺𝑤 ) ⊆ dom 𝐺 )
134 132 133 ax-mp dom ( 𝐺𝑤 ) ⊆ dom 𝐺
135 funimass4 ( ( Fun 𝐺 ∧ dom ( 𝐺𝑤 ) ⊆ dom 𝐺 ) → ( ( 𝐺 “ dom ( 𝐺𝑤 ) ) ⊆ ( ( 𝐹𝑤 ) × 𝑤 ) ↔ ∀ 𝑥 ∈ dom ( 𝐺𝑤 ) ( 𝐺𝑥 ) ∈ ( ( 𝐹𝑤 ) × 𝑤 ) ) )
136 131 134 135 sylancl ( 𝜑 → ( ( 𝐺 “ dom ( 𝐺𝑤 ) ) ⊆ ( ( 𝐹𝑤 ) × 𝑤 ) ↔ ∀ 𝑥 ∈ dom ( 𝐺𝑤 ) ( 𝐺𝑥 ) ∈ ( ( 𝐹𝑤 ) × 𝑤 ) ) )
137 129 136 mpbird ( 𝜑 → ( 𝐺 “ dom ( 𝐺𝑤 ) ) ⊆ ( ( 𝐹𝑤 ) × 𝑤 ) )
138 102 137 eqsstrrid ( 𝜑 → ( 𝐺𝑤 ) ⊆ ( ( 𝐹𝑤 ) × 𝑤 ) )
139 101 138 ssexd ( 𝜑 → ( 𝐺𝑤 ) ∈ V )
140 98 139 eqeltrid ( 𝜑 → ( 𝐺𝑤 ) ∈ V )
141 140 alrimiv ( 𝜑 → ∀ 𝑤 ( 𝐺𝑤 ) ∈ V )
142 isowe2 ( ( 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ∧ ∀ 𝑤 ( 𝐺𝑤 ) ∈ V ) → ( 𝑄 We ran 𝐺𝑇 We 𝐴 ) )
143 97 141 142 syl2anc ( 𝜑 → ( 𝑄 We ran 𝐺𝑇 We 𝐴 ) )
144 17 143 mpd ( 𝜑𝑇 We 𝐴 )