Step |
Hyp |
Ref |
Expression |
1 |
|
fofn |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐹 Fn ∅ ) |
2 |
|
fn0 |
⊢ ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ ) |
3 |
|
f10 |
⊢ ∅ : ∅ –1-1→ 𝐴 |
4 |
|
f1eq1 |
⊢ ( 𝐹 = ∅ → ( 𝐹 : ∅ –1-1→ 𝐴 ↔ ∅ : ∅ –1-1→ 𝐴 ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝐹 = ∅ → 𝐹 : ∅ –1-1→ 𝐴 ) |
6 |
2 5
|
sylbi |
⊢ ( 𝐹 Fn ∅ → 𝐹 : ∅ –1-1→ 𝐴 ) |
7 |
1 6
|
syl |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐹 : ∅ –1-1→ 𝐴 ) |
8 |
7
|
ancri |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 → ( 𝐹 : ∅ –1-1→ 𝐴 ∧ 𝐹 : ∅ –onto→ 𝐴 ) ) |
9 |
|
df-f1o |
⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 ↔ ( 𝐹 : ∅ –1-1→ 𝐴 ∧ 𝐹 : ∅ –onto→ 𝐴 ) ) |
10 |
8 9
|
sylibr |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐹 : ∅ –1-1-onto→ 𝐴 ) |
11 |
|
f1ofo |
⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 → 𝐹 : ∅ –onto→ 𝐴 ) |
12 |
10 11
|
impbii |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ 𝐹 : ∅ –1-1-onto→ 𝐴 ) |
13 |
|
f1o00 |
⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |
14 |
12 13
|
bitri |
⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |