Metamath Proof Explorer


Theorem fo00

Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion fo00 ( 𝐹 : ∅ –onto𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) )

Proof

Step Hyp Ref Expression
1 fofn ( 𝐹 : ∅ –onto𝐴𝐹 Fn ∅ )
2 fn0 ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ )
3 f10 ∅ : ∅ –1-1𝐴
4 f1eq1 ( 𝐹 = ∅ → ( 𝐹 : ∅ –1-1𝐴 ↔ ∅ : ∅ –1-1𝐴 ) )
5 3 4 mpbiri ( 𝐹 = ∅ → 𝐹 : ∅ –1-1𝐴 )
6 2 5 sylbi ( 𝐹 Fn ∅ → 𝐹 : ∅ –1-1𝐴 )
7 1 6 syl ( 𝐹 : ∅ –onto𝐴𝐹 : ∅ –1-1𝐴 )
8 7 ancri ( 𝐹 : ∅ –onto𝐴 → ( 𝐹 : ∅ –1-1𝐴𝐹 : ∅ –onto𝐴 ) )
9 df-f1o ( 𝐹 : ∅ –1-1-onto𝐴 ↔ ( 𝐹 : ∅ –1-1𝐴𝐹 : ∅ –onto𝐴 ) )
10 8 9 sylibr ( 𝐹 : ∅ –onto𝐴𝐹 : ∅ –1-1-onto𝐴 )
11 f1ofo ( 𝐹 : ∅ –1-1-onto𝐴𝐹 : ∅ –onto𝐴 )
12 10 11 impbii ( 𝐹 : ∅ –onto𝐴𝐹 : ∅ –1-1-onto𝐴 )
13 f1o00 ( 𝐹 : ∅ –1-1-onto𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) )
14 12 13 bitri ( 𝐹 : ∅ –onto𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) )