| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fofn | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  →  𝐹  Fn  ∅ ) | 
						
							| 2 |  | fn0 | ⊢ ( 𝐹  Fn  ∅  ↔  𝐹  =  ∅ ) | 
						
							| 3 |  | f10 | ⊢ ∅ : ∅ –1-1→ 𝐴 | 
						
							| 4 |  | f1eq1 | ⊢ ( 𝐹  =  ∅  →  ( 𝐹 : ∅ –1-1→ 𝐴  ↔  ∅ : ∅ –1-1→ 𝐴 ) ) | 
						
							| 5 | 3 4 | mpbiri | ⊢ ( 𝐹  =  ∅  →  𝐹 : ∅ –1-1→ 𝐴 ) | 
						
							| 6 | 2 5 | sylbi | ⊢ ( 𝐹  Fn  ∅  →  𝐹 : ∅ –1-1→ 𝐴 ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  →  𝐹 : ∅ –1-1→ 𝐴 ) | 
						
							| 8 | 7 | ancri | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  →  ( 𝐹 : ∅ –1-1→ 𝐴  ∧  𝐹 : ∅ –onto→ 𝐴 ) ) | 
						
							| 9 |  | df-f1o | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴  ↔  ( 𝐹 : ∅ –1-1→ 𝐴  ∧  𝐹 : ∅ –onto→ 𝐴 ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  →  𝐹 : ∅ –1-1-onto→ 𝐴 ) | 
						
							| 11 |  | f1ofo | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴  →  𝐹 : ∅ –onto→ 𝐴 ) | 
						
							| 12 | 10 11 | impbii | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  ↔  𝐹 : ∅ –1-1-onto→ 𝐴 ) | 
						
							| 13 |  | f1o00 | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴  ↔  ( 𝐹  =  ∅  ∧  𝐴  =  ∅ ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  ↔  ( 𝐹  =  ∅  ∧  𝐴  =  ∅ ) ) |