Step |
Hyp |
Ref |
Expression |
1 |
|
snex |
⊢ { 𝑥 } ∈ V |
2 |
1
|
dmex |
⊢ dom { 𝑥 } ∈ V |
3 |
2
|
uniex |
⊢ ∪ dom { 𝑥 } ∈ V |
4 |
|
df-1st |
⊢ 1st = ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) |
5 |
3 4
|
fnmpti |
⊢ 1st Fn V |
6 |
4
|
rnmpt |
⊢ ran 1st = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } } |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
|
opex |
⊢ 〈 𝑦 , 𝑦 〉 ∈ V |
9 |
7 7
|
op1sta |
⊢ ∪ dom { 〈 𝑦 , 𝑦 〉 } = 𝑦 |
10 |
9
|
eqcomi |
⊢ 𝑦 = ∪ dom { 〈 𝑦 , 𝑦 〉 } |
11 |
|
sneq |
⊢ ( 𝑥 = 〈 𝑦 , 𝑦 〉 → { 𝑥 } = { 〈 𝑦 , 𝑦 〉 } ) |
12 |
11
|
dmeqd |
⊢ ( 𝑥 = 〈 𝑦 , 𝑦 〉 → dom { 𝑥 } = dom { 〈 𝑦 , 𝑦 〉 } ) |
13 |
12
|
unieqd |
⊢ ( 𝑥 = 〈 𝑦 , 𝑦 〉 → ∪ dom { 𝑥 } = ∪ dom { 〈 𝑦 , 𝑦 〉 } ) |
14 |
13
|
rspceeqv |
⊢ ( ( 〈 𝑦 , 𝑦 〉 ∈ V ∧ 𝑦 = ∪ dom { 〈 𝑦 , 𝑦 〉 } ) → ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } ) |
15 |
8 10 14
|
mp2an |
⊢ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } |
16 |
7 15
|
2th |
⊢ ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } ) |
17 |
16
|
abbi2i |
⊢ V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } } |
18 |
6 17
|
eqtr4i |
⊢ ran 1st = V |
19 |
|
df-fo |
⊢ ( 1st : V –onto→ V ↔ ( 1st Fn V ∧ ran 1st = V ) ) |
20 |
5 18 19
|
mpbir2an |
⊢ 1st : V –onto→ V |