Step |
Hyp |
Ref |
Expression |
1 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
1
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
3 |
2
|
ancomd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ) |
4 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
5 |
|
rnexg |
⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) |
6 |
3 4 5
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ran 𝐹 ∈ V ) |
7 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
8 |
7
|
eleq1d |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) ) |
10 |
6 9
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ V ) |