Metamath Proof Explorer


Theorem focdmex

Description: The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021)

Ref Expression
Assertion focdmex ( ( 𝐴𝑉𝐹 : 𝐴onto𝐵 ) → 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 fof ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐴𝐵 )
2 1 anim2i ( ( 𝐴𝑉𝐹 : 𝐴onto𝐵 ) → ( 𝐴𝑉𝐹 : 𝐴𝐵 ) )
3 2 ancomd ( ( 𝐴𝑉𝐹 : 𝐴onto𝐵 ) → ( 𝐹 : 𝐴𝐵𝐴𝑉 ) )
4 fex ( ( 𝐹 : 𝐴𝐵𝐴𝑉 ) → 𝐹 ∈ V )
5 rnexg ( 𝐹 ∈ V → ran 𝐹 ∈ V )
6 3 4 5 3syl ( ( 𝐴𝑉𝐹 : 𝐴onto𝐵 ) → ran 𝐹 ∈ V )
7 forn ( 𝐹 : 𝐴onto𝐵 → ran 𝐹 = 𝐵 )
8 7 eleq1d ( 𝐹 : 𝐴onto𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) )
9 8 adantl ( ( 𝐴𝑉𝐹 : 𝐴onto𝐵 ) → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) )
10 6 9 mpbid ( ( 𝐴𝑉𝐹 : 𝐴onto𝐵 ) → 𝐵 ∈ V )