Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | focnvimacdmdm | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ran 𝐺 = 𝐵 ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐵 = ran 𝐺 ) |
| 3 | 2 | imaeq2d | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = ( ◡ 𝐺 “ ran 𝐺 ) ) |
| 4 | cnvimarndm | ⊢ ( ◡ 𝐺 “ ran 𝐺 ) = dom 𝐺 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = dom 𝐺 ) |
| 6 | fof | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 7 | 6 | fdmd | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → dom 𝐺 = 𝐴 ) |
| 8 | 5 7 | eqtrd | ⊢ ( 𝐺 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |