Metamath Proof Explorer


Theorem focnvimacdmdm

Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024)

Ref Expression
Assertion focnvimacdmdm ( 𝐺 : 𝐴onto𝐵 → ( 𝐺𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 forn ( 𝐺 : 𝐴onto𝐵 → ran 𝐺 = 𝐵 )
2 1 eqcomd ( 𝐺 : 𝐴onto𝐵𝐵 = ran 𝐺 )
3 2 imaeq2d ( 𝐺 : 𝐴onto𝐵 → ( 𝐺𝐵 ) = ( 𝐺 “ ran 𝐺 ) )
4 cnvimarndm ( 𝐺 “ ran 𝐺 ) = dom 𝐺
5 3 4 eqtrdi ( 𝐺 : 𝐴onto𝐵 → ( 𝐺𝐵 ) = dom 𝐺 )
6 fof ( 𝐺 : 𝐴onto𝐵𝐺 : 𝐴𝐵 )
7 6 fdmd ( 𝐺 : 𝐴onto𝐵 → dom 𝐺 = 𝐴 )
8 5 7 eqtrd ( 𝐺 : 𝐴onto𝐵 → ( 𝐺𝐵 ) = 𝐴 )