| Step | Hyp | Ref | Expression | 
						
							| 1 |  | foelrn | ⊢ ( ( ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑧  ∈  𝐴 𝑦  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 ) ) | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 3 |  | fvco3 | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑧 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 5 | 4 | rspceeqv | ⊢ ( ( ( 𝐺 ‘ 𝑧 )  ∈  𝐵  ∧  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) )  →  ∃ 𝑥  ∈  𝐵 ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 | 2 3 5 | syl2anc | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  𝑧  ∈  𝐴 )  →  ∃ 𝑥  ∈  𝐵 ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑦  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | rexbidv | ⊢ ( 𝑦  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  →  ( ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  ∃ 𝑥  ∈  𝐵 ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 9 | 6 8 | syl5ibrcom | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  →  ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 | rexlimdva | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵  →  ( ∃ 𝑧  ∈  𝐴 𝑦  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  →  ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 11 | 1 10 | syl5 | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵  →  ( ( ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 12 | 11 | impl | ⊢ ( ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶 )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶 )  →  ∀ 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶 ) )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 15 |  | 3anass | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶 )  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶 ) ) ) | 
						
							| 16 |  | dffo3 | ⊢ ( 𝐹 : 𝐵 –onto→ 𝐶  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑦  ∈  𝐶 ∃ 𝑥  ∈  𝐵 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 17 | 14 15 16 | 3imtr4i | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹  ∘  𝐺 ) : 𝐴 –onto→ 𝐶 )  →  𝐹 : 𝐵 –onto→ 𝐶 ) |