Step |
Hyp |
Ref |
Expression |
1 |
|
foelrn |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) ) |
2 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐵 ) |
3 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
5 |
4
|
rspceeqv |
⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ 𝐵 ∧ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
6 |
2 3 5
|
syl2anc |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑦 = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑦 = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
9 |
6 8
|
syl5ibrcom |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
10 |
9
|
rexlimdva |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
11 |
1 10
|
syl5 |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
12 |
11
|
impl |
⊢ ( ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
13 |
12
|
ralrimiva |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) → ∀ 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
14 |
13
|
anim2i |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
|
3anass |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ) ) |
16 |
|
dffo3 |
⊢ ( 𝐹 : 𝐵 –onto→ 𝐶 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
14 15 16
|
3imtr4i |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) → 𝐹 : 𝐵 –onto→ 𝐶 ) |