| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frel |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → Rel 𝐹 ) |
| 2 |
|
relrn0 |
⊢ ( Rel 𝐹 → ( 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) ) |
| 3 |
2
|
necon3abid |
⊢ ( Rel 𝐹 → ( 𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅ ) ) |
| 4 |
1 3
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( 𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅ ) ) |
| 5 |
|
frn |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ran 𝐹 ⊆ { 𝐵 } ) |
| 6 |
|
sssn |
⊢ ( ran 𝐹 ⊆ { 𝐵 } ↔ ( ran 𝐹 = ∅ ∨ ran 𝐹 = { 𝐵 } ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( ran 𝐹 = ∅ ∨ ran 𝐹 = { 𝐵 } ) ) |
| 8 |
7
|
ord |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( ¬ ran 𝐹 = ∅ → ran 𝐹 = { 𝐵 } ) ) |
| 9 |
4 8
|
sylbid |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } → ( 𝐹 ≠ ∅ → ran 𝐹 = { 𝐵 } ) ) |
| 10 |
9
|
imdistani |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐹 ≠ ∅ ) → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ran 𝐹 = { 𝐵 } ) ) |
| 11 |
|
dffo2 |
⊢ ( 𝐹 : 𝐴 –onto→ { 𝐵 } ↔ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ran 𝐹 = { 𝐵 } ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐹 ≠ ∅ ) → 𝐹 : 𝐴 –onto→ { 𝐵 } ) |