Metamath Proof Explorer


Theorem fodmrnu

Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006)

Ref Expression
Assertion fodmrnu ( ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐶onto𝐷 ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 fofn ( 𝐹 : 𝐴onto𝐵𝐹 Fn 𝐴 )
2 fofn ( 𝐹 : 𝐶onto𝐷𝐹 Fn 𝐶 )
3 fndmu ( ( 𝐹 Fn 𝐴𝐹 Fn 𝐶 ) → 𝐴 = 𝐶 )
4 1 2 3 syl2an ( ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐶onto𝐷 ) → 𝐴 = 𝐶 )
5 forn ( 𝐹 : 𝐴onto𝐵 → ran 𝐹 = 𝐵 )
6 forn ( 𝐹 : 𝐶onto𝐷 → ran 𝐹 = 𝐷 )
7 5 6 sylan9req ( ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐶onto𝐷 ) → 𝐵 = 𝐷 )
8 4 7 jca ( ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐶onto𝐷 ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) )