Step |
Hyp |
Ref |
Expression |
1 |
|
foima |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 “ 𝐴 ) = 𝐵 ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 “ 𝐴 ) = 𝐵 ) |
3 |
|
imaeq2 |
⊢ ( 𝑥 = ∅ → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ∅ ) ) |
4 |
|
ima0 |
⊢ ( 𝐹 “ ∅ ) = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐹 “ 𝑥 ) = ∅ ) |
6 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
7 |
5 6
|
breq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ∅ ≼ ∅ ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ∅ ≼ ∅ ) ) ) |
9 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) |
10 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
11 |
9 10
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) ) |
13 |
|
imaeq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ) |
14 |
|
id |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝑥 = ( 𝑦 ∪ { 𝑧 } ) ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
17 |
|
imaeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝐴 ) ) |
18 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
19 |
17 18
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) ) |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
21
|
0dom |
⊢ ∅ ≼ ∅ |
23 |
22
|
a1i |
⊢ ( 𝐹 Fn 𝐴 → ∅ ≼ ∅ ) |
24 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
25 |
24
|
ad2antrl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → Fun 𝐹 ) |
26 |
|
funressn |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
27 |
|
rnss |
⊢ ( ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } → ran ( 𝐹 ↾ { 𝑧 } ) ⊆ ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
28 |
25 26 27
|
3syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ran ( 𝐹 ↾ { 𝑧 } ) ⊆ ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
29 |
|
df-ima |
⊢ ( 𝐹 “ { 𝑧 } ) = ran ( 𝐹 ↾ { 𝑧 } ) |
30 |
|
vex |
⊢ 𝑧 ∈ V |
31 |
30
|
rnsnop |
⊢ ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } = { ( 𝐹 ‘ 𝑧 ) } |
32 |
31
|
eqcomi |
⊢ { ( 𝐹 ‘ 𝑧 ) } = ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } |
33 |
28 29 32
|
3sstr4g |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ⊆ { ( 𝐹 ‘ 𝑧 ) } ) |
34 |
|
snex |
⊢ { ( 𝐹 ‘ 𝑧 ) } ∈ V |
35 |
|
ssexg |
⊢ ( ( ( 𝐹 “ { 𝑧 } ) ⊆ { ( 𝐹 ‘ 𝑧 ) } ∧ { ( 𝐹 ‘ 𝑧 ) } ∈ V ) → ( 𝐹 “ { 𝑧 } ) ∈ V ) |
36 |
33 34 35
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ∈ V ) |
37 |
|
fvi |
⊢ ( ( 𝐹 “ { 𝑧 } ) ∈ V → ( I ‘ ( 𝐹 “ { 𝑧 } ) ) = ( 𝐹 “ { 𝑧 } ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( I ‘ ( 𝐹 “ { 𝑧 } ) ) = ( 𝐹 “ { 𝑧 } ) ) |
39 |
38
|
uneq2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) = ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) ) |
40 |
|
imaundi |
⊢ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) |
41 |
39 40
|
eqtr4di |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) = ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ) |
42 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) |
43 |
|
ssdomg |
⊢ ( { ( 𝐹 ‘ 𝑧 ) } ∈ V → ( ( 𝐹 “ { 𝑧 } ) ⊆ { ( 𝐹 ‘ 𝑧 ) } → ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ) ) |
44 |
34 33 43
|
mpsyl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ) |
45 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
46 |
45
|
ensn1 |
⊢ { ( 𝐹 ‘ 𝑧 ) } ≈ 1o |
47 |
30
|
ensn1 |
⊢ { 𝑧 } ≈ 1o |
48 |
46 47
|
entr4i |
⊢ { ( 𝐹 ‘ 𝑧 ) } ≈ { 𝑧 } |
49 |
|
domentr |
⊢ ( ( ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ∧ { ( 𝐹 ‘ 𝑧 ) } ≈ { 𝑧 } ) → ( 𝐹 “ { 𝑧 } ) ≼ { 𝑧 } ) |
50 |
44 48 49
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ≼ { 𝑧 } ) |
51 |
38 50
|
eqbrtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ≼ { 𝑧 } ) |
52 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
53 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
54 |
52 53
|
sylibr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
55 |
|
undom |
⊢ ( ( ( ( 𝐹 “ 𝑦 ) ≼ 𝑦 ∧ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ≼ { 𝑧 } ) ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) |
56 |
42 51 54 55
|
syl21anc |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) |
57 |
41 56
|
eqbrtrrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) |
58 |
57
|
exp32 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐹 Fn 𝐴 → ( ( 𝐹 “ 𝑦 ) ≼ 𝑦 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
59 |
58
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) → ( 𝐹 Fn 𝐴 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
60 |
8 12 16 20 23 59
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
61 |
|
fofn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) |
62 |
60 61
|
impel |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
63 |
2 62
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) |