| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 4 |  | eqimss2 | ⊢ ( ran  𝐹  =  𝐵  →  𝐵  ⊆  ran  𝐹 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  𝐵  ⊆  ran  𝐹 ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  →  𝐵  ⊆  ran  𝐹 ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  →  𝐵  ∈  Fin ) | 
						
							| 8 |  | fipreima | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ⊆  ran  𝐹  ∧  𝐵  ∈  Fin )  →  ∃ 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ( 𝐹  “  𝑥 )  =  𝐵 ) | 
						
							| 9 | 2 6 7 8 | syl3anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  →  ∃ 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ( 𝐹  “  𝑥 )  =  𝐵 ) | 
						
							| 10 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 12 |  | finnum | ⊢ ( 𝑥  ∈  Fin  →  𝑥  ∈  dom  card ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑥  ∈  dom  card ) | 
						
							| 14 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 15 |  | fofun | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  Fun  𝐹 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  Fun  𝐹 ) | 
						
							| 17 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 18 | 17 | elpwid | ⊢ ( 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑥  ⊆  𝐴 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑥  ⊆  𝐴 ) | 
						
							| 20 |  | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 21 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 22 | 14 20 21 | 3syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  dom  𝐹  =  𝐴 ) | 
						
							| 23 | 19 22 | sseqtrrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑥  ⊆  dom  𝐹 ) | 
						
							| 24 |  | fores | ⊢ ( ( Fun  𝐹  ∧  𝑥  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 –onto→ ( 𝐹  “  𝑥 ) ) | 
						
							| 25 | 16 23 24 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 –onto→ ( 𝐹  “  𝑥 ) ) | 
						
							| 26 |  | fodomnum | ⊢ ( 𝑥  ∈  dom  card  →  ( ( 𝐹  ↾  𝑥 ) : 𝑥 –onto→ ( 𝐹  “  𝑥 )  →  ( 𝐹  “  𝑥 )  ≼  𝑥 ) ) | 
						
							| 27 | 13 25 26 | sylc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( 𝐹  “  𝑥 )  ≼  𝑥 ) | 
						
							| 28 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 29 |  | ssdomg | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ⊆  𝐴  →  𝑥  ≼  𝐴 ) ) | 
						
							| 30 | 28 19 29 | sylc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑥  ≼  𝐴 ) | 
						
							| 31 |  | domtr | ⊢ ( ( ( 𝐹  “  𝑥 )  ≼  𝑥  ∧  𝑥  ≼  𝐴 )  →  ( 𝐹  “  𝑥 )  ≼  𝐴 ) | 
						
							| 32 | 27 30 31 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( 𝐹  “  𝑥 )  ≼  𝐴 ) | 
						
							| 33 |  | breq1 | ⊢ ( ( 𝐹  “  𝑥 )  =  𝐵  →  ( ( 𝐹  “  𝑥 )  ≼  𝐴  ↔  𝐵  ≼  𝐴 ) ) | 
						
							| 34 | 32 33 | syl5ibcom | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  ∧  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( ( 𝐹  “  𝑥 )  =  𝐵  →  𝐵  ≼  𝐴 ) ) | 
						
							| 35 | 34 | rexlimdva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  →  ( ∃ 𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ( 𝐹  “  𝑥 )  =  𝐵  →  𝐵  ≼  𝐴 ) ) | 
						
							| 36 | 9 35 | mpd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –onto→ 𝐵 )  →  𝐵  ≼  𝐴 ) |