| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fof | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  𝑓 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 | 1 | fdmd | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  dom  𝑓  =  𝐴 ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ( dom  𝑓  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 4 |  | dm0rn0 | ⊢ ( dom  𝑓  =  ∅  ↔  ran  𝑓  =  ∅ ) | 
						
							| 5 |  | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ran  𝑓  =  𝐵 ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ( ran  𝑓  =  ∅  ↔  𝐵  =  ∅ ) ) | 
						
							| 7 | 4 6 | bitrid | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ( dom  𝑓  =  ∅  ↔  𝐵  =  ∅ ) ) | 
						
							| 8 | 3 7 | bitr3d | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ( 𝐴  =  ∅  ↔  𝐵  =  ∅ ) ) | 
						
							| 9 | 8 | necon3bid | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ( 𝐴  ≠  ∅  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 10 | 9 | biimpac | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  𝐵  ≠  ∅ ) | 
						
							| 11 | 10 | adantll | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  𝐵  ≠  ∅ ) | 
						
							| 12 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 13 | 12 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 14 | 5 13 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  𝐵  ∈  V ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  𝐵  ∈  V ) | 
						
							| 16 |  | 0sdomg | ⊢ ( 𝐵  ∈  V  →  ( ∅  ≺  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  ( ∅  ≺  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  ( ∅  ≺  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 19 | 11 18 | mpbird | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  ∅  ≺  𝐵 ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( 𝑓 : 𝐴 –onto→ 𝐵  →  ∅  ≺  𝐵 ) ) | 
						
							| 21 |  | fodomfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  𝐵  ≼  𝐴 ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑓 : 𝐴 –onto→ 𝐵  →  𝐵  ≼  𝐴 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( 𝑓 : 𝐴 –onto→ 𝐵  →  𝐵  ≼  𝐴 ) ) | 
						
							| 24 | 20 23 | jcad | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( 𝑓 : 𝐴 –onto→ 𝐵  →  ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 ) ) ) | 
						
							| 25 | 24 | exlimdv | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵  →  ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 ) ) ) | 
						
							| 26 | 25 | expimpd | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 )  →  ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 ) ) ) | 
						
							| 27 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 28 |  | sdomdomtrfi | ⊢ ( ( ∅  ∈  Fin  ∧  ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 )  →  ∅  ≺  𝐴 ) | 
						
							| 29 | 27 28 | mp3an1 | ⊢ ( ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 )  →  ∅  ≺  𝐴 ) | 
						
							| 30 |  | 0sdomg | ⊢ ( 𝐴  ∈  Fin  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 31 | 29 30 | imbitrid | ⊢ ( 𝐴  ∈  Fin  →  ( ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 )  →  𝐴  ≠  ∅ ) ) | 
						
							| 32 |  | fodomfir | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 )  →  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) | 
						
							| 33 | 32 | 3expib | ⊢ ( 𝐴  ∈  Fin  →  ( ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 )  →  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) | 
						
							| 34 | 31 33 | jcad | ⊢ ( 𝐴  ∈  Fin  →  ( ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ≠  ∅  ∧  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) ) | 
						
							| 35 | 26 34 | impbid | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 )  ↔  ( ∅  ≺  𝐵  ∧  𝐵  ≼  𝐴 ) ) ) |