Metamath Proof Explorer


Theorem fodomnum

Description: A version of fodom that doesn't require the Axiom of Choice ax-ac . (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fodomnum ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴onto𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 fornex ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴onto𝐵𝐵 ∈ V ) )
2 1 com12 ( 𝐹 : 𝐴onto𝐵 → ( 𝐴 ∈ dom card → 𝐵 ∈ V ) )
3 numacn ( 𝐵 ∈ V → ( 𝐴 ∈ dom card → 𝐴AC 𝐵 ) )
4 2 3 syli ( 𝐹 : 𝐴onto𝐵 → ( 𝐴 ∈ dom card → 𝐴AC 𝐵 ) )
5 4 com12 ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴onto𝐵𝐴AC 𝐵 ) )
6 fodomacn ( 𝐴AC 𝐵 → ( 𝐹 : 𝐴onto𝐵𝐵𝐴 ) )
7 5 6 syli ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴onto𝐵𝐵𝐴 ) )