Description: A version of fodom that doesn't require the Axiom of Choice ax-ac . (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 28-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fodomnum | ⊢ ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fornex | ⊢ ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) | |
2 | 1 | com12 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐴 ∈ dom card → 𝐵 ∈ V ) ) |
3 | numacn | ⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵 ) ) | |
4 | 2 3 | syli | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵 ) ) |
5 | 4 | com12 | ⊢ ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐴 ∈ AC 𝐵 ) ) |
6 | fodomacn | ⊢ ( 𝐴 ∈ AC 𝐵 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) ) | |
7 | 5 6 | syli | ⊢ ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) ) |