Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | foelrn | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo3 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
3 | eqeq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝐶 = ( 𝐹 ‘ 𝑥 ) ) ) | |
4 | 3 | rexbidv | ⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) ) |
5 | 4 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
6 | 2 5 | sylan | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |