Metamath Proof Explorer


Theorem foelrn

Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011)

Ref Expression
Assertion foelrn ( ( 𝐹 : 𝐴onto𝐵𝐶𝐵 ) → ∃ 𝑥𝐴 𝐶 = ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 dffo3 ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥𝐴 𝑦 = ( 𝐹𝑥 ) ) )
2 1 simprbi ( 𝐹 : 𝐴onto𝐵 → ∀ 𝑦𝐵𝑥𝐴 𝑦 = ( 𝐹𝑥 ) )
3 eqeq1 ( 𝑦 = 𝐶 → ( 𝑦 = ( 𝐹𝑥 ) ↔ 𝐶 = ( 𝐹𝑥 ) ) )
4 3 rexbidv ( 𝑦 = 𝐶 → ( ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐴 𝐶 = ( 𝐹𝑥 ) ) )
5 4 rspccva ( ( ∀ 𝑦𝐵𝑥𝐴 𝑦 = ( 𝐹𝑥 ) ∧ 𝐶𝐵 ) → ∃ 𝑥𝐴 𝐶 = ( 𝐹𝑥 ) )
6 2 5 sylan ( ( 𝐹 : 𝐴onto𝐵𝐶𝐵 ) → ∃ 𝑥𝐴 𝐶 = ( 𝐹𝑥 ) )