Description: Property of a surjective function. As foelrn but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | foelrnf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
Assertion | foelrnf | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foelrnf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
2 | 1 | dffo3f | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
3 | 2 | simprbi | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
4 | eqeq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝐶 = ( 𝐹 ‘ 𝑥 ) ) ) | |
5 | 4 | rexbidv | ⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) ) |
6 | 5 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
7 | 3 6 | sylan | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |